Advertisement

Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates

  • Veer P. Bhavanandan
  • D. Channe Gowda
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 9)

Abstract

This chapter provides an overview of structures and functions of complex carbohydrates (commonly called glycans) that are covalently linked to proteins or lipids to form glycoconjugates known as glycoproteins, glycolipids, and proteoglycans. To understand the complexity of the glycan structures, the nature of their monosaccharide building blocks, how the monomeric units are covalently linked to each other, and how the resulting glycans are attached to proteins or lipids are discussed. Then, the classification, nomenclature, structural features, and functions of the glycan moieties of animal glycoconjugates are briefly described. All three classes of glycoconjugates are constituents of plasma membranes of all animal cells, including those of the nervous system. Glycoproteins and, particularly, proteoglycans are also found abundantly as constituents of tissue matrices. Additionally, glycan-rich mucin glycoproteins are the major constituents of mucus secretions of epithelia of various organs. Furthermore, the chapter draws attention to the incredible structural complexity and diversity of the glycan moieties of cell surface and extracellular glycoconjugates. Finally, the involvement of the glycans as informational molecules in a wide range of essential functions in almost all known biological processes, which are crucial for development, differentiation, and normal functioning of animals, is discussed.

Keywords

Complex carbohydrates N-Glycans O-Glycans Glycosaminoglycans Glycoconjugates Glycoproteins Glycolipids GPI anchors Proteoglycans Structure and functions of glycoconjugates 

Notes

Acknowledgments

We thank Dr. Rajeshwara Achur for the preparation of Figs. 1.11.9 and Ms. Jillian Dunbar, Devon Medical Art, Hershey, for the artwork in Fig. 1.10. DCG is partly supported by the grant AI41139 from National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.

Conflicts of Interest The authors have no conflict of interest.

References

  1. Achur RN, Valiyaveettil M, Alkhalil A, Ockenhouse CF, Gowda DC. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans in the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem. 2000;275(51):40344–56.PubMedCrossRefGoogle Scholar
  2. Achur RN, Muthusamy A, Madhunapantula SV, Bhavanandan V, Seudieu C, Gowda DC. Chondroitin sulfate proteoglycans of bovine cornea: Structural characterization and assessment for the adherence of Plasmodium falciparum-infected erythrocytes. Biochim Biophys Acta. 2004;1701(1–2):109–19.PubMedCrossRefGoogle Scholar
  3. Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. 1st ed. New York: Marcel-Dekker; 1992.Google Scholar
  4. Ariga T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(7):386–404.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem. 1987;262:848–53.PubMedGoogle Scholar
  6. Bardor M, Nguyen DH, Diaz S, Varki A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem. 2002;280(6):4228–37.CrossRefGoogle Scholar
  7. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.PubMedCrossRefGoogle Scholar
  8. Bertozzi CR, Rabuka D. Structural basis of glycan diversity. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 23–36.Google Scholar
  9. Bhavanandan VP, Davidson EA. Proteoglycans: structure, synthesis, function. In: Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. New York: Marcel-Dekker; 1992. p. 167–202.Google Scholar
  10. Bhavanandan VP, Furukawa K. Biochemistry and oncology of sialoglycoproteins. In: Rosenberg A, editor. Biology of the sialic acids. New York: Plenum Press; 1995. p. 145–96.CrossRefGoogle Scholar
  11. Bishop JR, Schuksz M, Esko JD. Heparan sulfate proteoglycans fine-tune mammalian physiology. Nature. 2007;446(7139):1030–7.PubMedCrossRefGoogle Scholar
  12. Brockhausen I, Schachter H, Stanley P. O-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 115–27.Google Scholar
  13. Brooks SA, Dwek MV, Schumacher U. Functional and Molecular Glycobiology. 1st ed. Oxford: BIOS Scientific; 2002.Google Scholar
  14. Bruses JL, Rutishauser U. Polysialic acid in neural cell development: roles, regulation and mechanism. In: Fukuda M, Hindsgaul O, editors. Molecular and Cellular Glycobiology. Oxford: Oxford University Press; 2000. p. 116–32.Google Scholar
  15. Buddecke E. Proteoglycans. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 199–216.Google Scholar
  16. Chai W, Yuen CT, Kogelberg H, Carruthers RA, Margolis RU, Feizi T, Lawson AM. High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem.1999; 263(3):879–88.PubMedCrossRefGoogle Scholar
  17. Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol. 2005;8(6):617–25.CrossRefGoogle Scholar
  18. Cummings RD. Synthesis of asparagine-linked oligosaccharides: pathways, genetics, and metabolic regulation. In: Allen HJ, Kisailus EC, editors. Glycoconjugates. New York: Marcel-Dekker; 1992. p. 333–60.Google Scholar
  19. Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 229–48.Google Scholar
  20. Ferguson MAJ, Kinoshita T, Hart GW. Glycosylphosphatidylinositol anchors. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 143–61.Google Scholar
  21. Freeze H, Haltiwanger RS. Other classes of ER/Golgi-derived glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 163–73.Google Scholar
  22. Fukuda M. Cell surface carbohydrates: cell type-specific expression. In: Fukuda M, Hindsgaul O, editors. Molecular and Cellular Glycobiology. Oxford: Oxford University Press; 2000. p. 1–61.Google Scholar
  23. Fukuda MN, Hakomori S. Structures of branched blood group A-active glycosphingolipids in human erythrocytes and polymorphism of A- and H-glycolipids in A1 and A2 subgroups. J Biol Chem. 1982;257(1):446–55.PubMedGoogle Scholar
  24. Fukuda MN, Bothner B, Scartezzini P, Dell A. Isolation and characterization of poly-N-acetyllactosaminylceramides accumulated in the erythrocytes of congenital dyserythropoietic anemia type II patients. Chem Phys Lipids. 1986;42(1–3):185–97.PubMedCrossRefGoogle Scholar
  25. Funderburgh JL. Keratan sulfate: structure, biosynthesis, and function. Glycobiology. 2000;10(10):951–8.PubMedCrossRefGoogle Scholar
  26. Funderburgh JL, Caterson B, Conrad GW. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem. 1987;262(24):11634–40.PubMedGoogle Scholar
  27. Gabius H-J, editor. The sugar code: fundamentals of glycosciences. 1st ed. Weinheim: Wiley-VCH; 2009.Google Scholar
  28. Gascon E, Vutskits L, Kiss JZ. Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev. 2007;56(1):101–18.PubMedCrossRefGoogle Scholar
  29. Gebauer JM, Müller S, Hanisch FG, Paulsson M, Wagener R. O-Glucosylation and O-fucosylation occur together in close proximity on the first epidermal growth factor repeat of AMACO (VWA2 protein). J Biol Chem. 2008;283(26):17846–54.PubMedCrossRefGoogle Scholar
  30. Hakomori S. Structure, organization, and functions of glycosphingolipids in membrane. Curr Opin Hematol. 2003;10(1):16–24.PubMedCrossRefGoogle Scholar
  31. Hascall V, Esko JD. Hyaluronan. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 219–27.Google Scholar
  32. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Ann Rev Physiol. 2008;70:431–57.CrossRefGoogle Scholar
  33. Hennet T. Diseases of glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 365–83.Google Scholar
  34. Hildebrandt H, Dityatev A. Polysialic acid in brain development and synaptic plasticity. Top Curr Chem. (2013) 10.1007/128_2013_446, Springer-Verlag Berlin Heidelberg 2013.Google Scholar
  35. Homeister J, Lowe JB. Carbohydrate recognition in leukocyte-endothelial cell interactions. In: Hindsgaul O, Fukuda M, editors. Molecular and cellular glycobiology. Oxford: Oxford University Press; 2000. p. 62–115.Google Scholar
  36. Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864–75.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kizuka Y, Oka S. Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci. 2012;69(24):4135–47.PubMedCrossRefGoogle Scholar
  38. Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5(3):195–208.PubMedCrossRefGoogle Scholar
  39. Kopitz J. Glycolipids. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 177–98.Google Scholar
  40. Krusius T, Finne J, Margolis RK, Margolis RU. Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain. J Biol Chem. 1986;261(18):8237–42.PubMedGoogle Scholar
  41. Kundu SK. Glycolipids: structure, synthesis, functions. In: Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. New York: Marcel-Dekker; 1992. p. 203–62.Google Scholar
  42. Leeden RW, Wu G. Neurobiology meets glycosciences. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 495–516.Google Scholar
  43. Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem. 2012;84(7):3040–8.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Li B, An HJ, Hedrick JL, Lebrilla CB. Collision-induced dissociation tandem mass spectrometry for structural elucidation of glycans. Methods Mol Biol. 2009;534:133–45.PubMedGoogle Scholar
  45. Luther KB, Haltiwanger RS. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol. 2009;41(5):1011–24.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Malavaki C, Mizumoto S, Karamanos N, Sugahara K. Recent advances in the structural study of functional chondroitin and dermatan sulfate in health and disease. Connect Tissue Res. 2008;49(3):133–9.PubMedCrossRefGoogle Scholar
  47. Miljkovic M. Carbohydrates: synthesis, mechanisms, and stereoelectronic effects. 1st ed. New York: Springer; 2010.Google Scholar
  48. Morita I, Kizuka Y, Kakuda S, Oka S. Expression and function of the HNK-1 carbohydrate. J Biochem. 2008;143(6):719–24.PubMedCrossRefGoogle Scholar
  49. Müthing J. Influenza A, and Sendai viruses preferentially bind to fucosylated gangliosides with linear poly-N-acetyllactosaminyl chains from human granulocytes. Carbohydr Res. 1996;290(2):217–24.PubMedCrossRefGoogle Scholar
  50. Nagai Y, Iwamori M. Cellular biology of gangliosides. In: Rosenberg A, editor. Biology of the sialic acids. New York: Plenum Press; 1995. p. 197–241.CrossRefGoogle Scholar
  51. Nakamura N, Lyalin D, Panin VM. Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin Cell Dev Biol. 2010;21(6):622–30.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Nandini CD, Sugahara K. Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv Pharmacol. 2006;53:253–79.PubMedCrossRefGoogle Scholar
  53. Nishimura S. Toward automated glycan analysis. Adv Carbohydr Chem Biochem. 2011;65:219–71.PubMedCrossRefGoogle Scholar
  54. North SJ, Hitchen PG, Haslam SM, Dell A. Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol. 2009;19(5):498–506.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Orlando R. Quantitative analysis of glycoprotein glycans. Methods Mol Biol. 2013;951:197–215.PubMedCrossRefGoogle Scholar
  56. Patsos G, Corfield A. O-Glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 111–37.Google Scholar
  57. Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochem. 2008;47(27):6991–7000.CrossRefGoogle Scholar
  58. Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562–74.PubMedCrossRefGoogle Scholar
  59. Sasisekharan R, Raman R, Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Ann Rev Biomed Eng. 2008;8:181–231.CrossRefGoogle Scholar
  60. Schachter H, Brockhausen I. The biosynthesis of serine(threonine)-N-acetylgalactosamine-linked carbohydrate moieties. In: Allen HJ, Kisailus EC, editors. Glycoconjugates. New York: Marcel-Dekker; 1992. p. 263–332.Google Scholar
  61. Schauer R. Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena). 2004;107(1):49–64.CrossRefGoogle Scholar
  62. Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol. 2009;19(5):507–14.PubMedCrossRefGoogle Scholar
  63. Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem. 2012;404(4):1141–9.PubMedCrossRefGoogle Scholar
  64. Schnaar R, Suzuki A, Stanley P. Glycospingolipids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 129–41.Google Scholar
  65. Schwarting GA, Jungalwala FB, Chou DK, Boyer AM, Yamamoto M. Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev Biol. 1987;120:65–76.PubMedCrossRefGoogle Scholar
  66. Shams-Eldin H, Debierre-Grockiego F, Schwarz RT. Glycosylphosphatidylinositol anchors: structure, biosynthesis and functions. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 155–73.Google Scholar
  67. Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem. 2013;288(10):6904–11.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Stanley P, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 175–98.Google Scholar
  69. Stanley P, Schachter H, Taniguchi N. N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 101–14.Google Scholar
  70. Svennerholm L. Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog Brain Res. 1994;101:XI–XIV.PubMedCrossRefGoogle Scholar
  71. Taylor ME, Drickamer K. Introduction to Glycobiology. 3rd ed. Oxford: Oxford University Press; 2011.Google Scholar
  72. Tivnan A, Shannon W, Gubala V, Nooney R, Williams DE, McDonagh C, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7(5):e38129.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Tokuda A, Ariga T, Isogai Y, Komba S, Kiso M, Hasegawa A, et al. On the specificity of anti-sulfoglucuronosyl glycolipid antibodies. J Carbohydrate Chem. 1998;17:535–46.CrossRefGoogle Scholar
  74. Varki A. Diversity of the sialic acids. Glycobiology. 1992;2(1):25–40.PubMedCrossRefGoogle Scholar
  75. Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 601–15.Google Scholar
  76. Varki A, Lowe JB. Biological roles of glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 75–88.Google Scholar
  77. Varki A, Schauer R. Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 199–217.Google Scholar
  78. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 2008.Google Scholar
  79. Voet D, Voet JG. Biochemistry. 4th ed. New York: John Wiley & Sons; 2010.Google Scholar
  80. Volpi N. Chondroitin sulfate; structure, role and pharmacological activity. Ad Pharmacol. 2006;53:1–58.Google Scholar
  81. Wang B, Miller JB, McNeil Y, McVeagh P. Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(1):435–9.PubMedCrossRefGoogle Scholar
  82. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.PubMedCrossRefGoogle Scholar
  83. Yu RK, Ledeen RW. Configuration of the ketosidic bond of sialic acid. J Biol Chem. 1969;24:1306–13.Google Scholar
  84. Yuriev E, Ramsland PA, editors. Structural glycobiology. 1st ed. Boca Raton: CRC Press; 2012.Google Scholar
  85. Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14(4):401–18.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Zhang H, Uchimura K, Kadomatsu K. Brain keratan sulfate and glial scar formation. Ann NY Acad Sci. 2006;1086:81–90.PubMedCrossRefGoogle Scholar
  87. Zuber C, Roth J. N-Glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 87–110.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, H171The Pennsylvania State University College of MedicineHersheyUSA
  2. 2.SimpsonvilleUSA

Personalised recommendations