Advertisement

Energetics of Cofactors in Photosynthetic Complexes: Relationship Between Protein–Cofactor Interactions and Midpoint Potentials

  • James P. AllenEmail author
  • JoAnn C. Williams
Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 11)

Abstract

In photosynthetic organisms, solar energy drives electron and proton transfer reactions across cell membranes in order to create energy-rich compounds. These reactions are performed by pigment–protein complexes, including bacterial reaction centers and photosystem II. In this chapter we discuss how electron transfer is determined by the transition energies and oxidation–reduction midpoint potentials of the cofactors and how protein environments can alter the energetics of these cofactors, in particular the primary electron donors, the bacteriochlorophyll dimer of reaction centers and P680 of photosystem II. A Hückel model is presented that provides an accurate description of the electronic structure of the bacteriochlorophyll dimer, including why specific protein interactions, namely, electrostatic and hydrogen bonding interactions, alter not only the oxidation–reduction midpoint potentials but also the electron spin distribution. A special focus is placed on how protein environments can create strong oxidants, including the ability of photosystem II to perform the highly oxidizing reactions needed to oxidize water and the involvement of the Mn4Ca cluster in this process.

Keywords

Oxidation–reduction potential Electron transfer Bacteriochlorophyll Bacteriopheophytin Chlorophyll Bacteriochlorophyll dimer Manganese cluster Reaction centers Photosystem II 

References

  1. 1.
    Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.Google Scholar
  2. 2.
    Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Dordrecht: Springer; 2009.Google Scholar
  3. 3.
    Wydrzynski TJ, Satoh K, editors. Photosystem II: the light-driven water:plastoquinone oxidoreductase. Dordrecht: Springer; 2005.Google Scholar
  4. 4.
    Rutherford AW, Osyczka A, Rappaport F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett. 2012;586(5):603–16.CrossRefGoogle Scholar
  5. 5.
    Williams JC, Allen JP. Directed modification of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Dordrecht: Kluwer; 2009.Google Scholar
  6. 6.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature. 1985;318(6047):618–24.CrossRefADSGoogle Scholar
  7. 7.
    Deisenhofer J, Epp O, Sinning I, Michel H. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995;246(3):429–57.CrossRefGoogle Scholar
  8. 8.
    Allen JP, Feher G, Yeates TO, Komiya H, Rees DC. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987;84(16):5730–4.CrossRefADSGoogle Scholar
  9. 9.
    Chang CH, El-Kabbani O, Tiede D, Norris J, Schiffer M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry. 1991;30(22):5352–60.CrossRefGoogle Scholar
  10. 10.
    Ermler U, Fritzsch G, Buchanan SK, Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure. 1994;2(10):925–36.CrossRefGoogle Scholar
  11. 11.
    McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A. 1999;96(26):14706–11.CrossRefADSGoogle Scholar
  12. 12.
    Camara-Artigas A, Brune D, Allen JP. Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci U S A. 2002;99(17):11055–60.CrossRefADSGoogle Scholar
  13. 13.
    Debus RJ, Feher G, Okamura MY. LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry. 1985;24(10):2488–500.CrossRefGoogle Scholar
  14. 14.
    Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature. 2001;409(6821):739–43.CrossRefADSGoogle Scholar
  15. 15.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;303(5665):1831–8.CrossRefADSGoogle Scholar
  16. 16.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature. 2005;438(7070):1040–4.CrossRefADSGoogle Scholar
  17. 17.
    Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science. 2006;314(5800):821–5.CrossRefADSGoogle Scholar
  18. 18.
    Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60.CrossRefADSGoogle Scholar
  19. 19.
    Nanba O, Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987;84(1):109–12.CrossRefADSGoogle Scholar
  20. 20.
    Rappaport F, Diner BA. Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev. 2008;252(3–4):259–72.CrossRefGoogle Scholar
  21. 21.
    Renger G, Renger T. Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res. 2008;98(1–3):53–80.CrossRefGoogle Scholar
  22. 22.
    Grimm B, Porra RJ, Rüdiger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls. Dordrecht: Springer; 2006.Google Scholar
  23. 23.
    Bylina EJ, Kirmaier C, McDowell L, Holten D, Youvan DC. Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature. 1988;336(6195):182–4.CrossRefADSGoogle Scholar
  24. 24.
    Breton J, Nabedryk E, Allen JP, Williams JC. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C = O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1997;36(15):4515–25.CrossRefGoogle Scholar
  25. 25.
    Dahlbom MG, Reimers JR. Successes and failures of time-dependent density functional theory for the low-lying excited states of chlorophylls. Mol Phys. 2005;103(6–8):1057–65.CrossRefADSGoogle Scholar
  26. 26.
    Rätsep M, Cai ZL, Reimers JR, Freiberg A. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q y fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys. 2011;134(2):024506.ADSGoogle Scholar
  27. 27.
    Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature. 2005;434(7033):625–8.CrossRefADSGoogle Scholar
  28. 28.
    Read EL, Engel GS, Calhoun TR, Mančal T, Ahn TK, Blankenship RE, Fleming GR. Cross-peak-specific two-dimensional electronic spectroscopy. Proc Natl Acad Sci U S A. 2007;104(36):14203–8.CrossRefADSGoogle Scholar
  29. 29.
    Matthews BW, Fenna RE, Bolognesi MC, Schmid MF, Olson JM. Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol. 1979;131(2):259–85.CrossRefGoogle Scholar
  30. 30.
    Tronrud DE, Schmid MF, Matthews BW. Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol. 1986;188(3):443–54.CrossRefGoogle Scholar
  31. 31.
    Li YF, Zhou W, Blankenship RE, Allen JP. Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol. 1997;271(3):456–71.CrossRefGoogle Scholar
  32. 32.
    Ben-Shem A, Frolow F, Nelson N. Evolution of photosystem I-from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 2004;564(3):274–80.CrossRefGoogle Scholar
  33. 33.
    Tronrud DE, Wen J, Gay L, Blankenship RE. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res. 2009;100(2):79–87.CrossRefGoogle Scholar
  34. 34.
    Larson CR, Seng CO, Lauman L, Matthies HJ, Wen J, Blankenship RE, Allen JP. The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Photosynth Res. 2011;107(2):139–50.CrossRefGoogle Scholar
  35. 35.
    Watanabe T, Kobayashi M. Electrochemistry of chlorophylls. In: Scheer H, editor. Chlorophylls. Boca Raton, FL: CRC Press; 1991.Google Scholar
  36. 36.
    Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T. Redox potential of chlorophyll d in vitro. Biochim Biophys Acta. 2007;1767(6):596–602.CrossRefGoogle Scholar
  37. 37.
    Woodbury NW, Allen JP. The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.Google Scholar
  38. 38.
    Wang H, Lin S, Allen JP, Williams JC, Blankert S, Laser C, Woodbury NW. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science. 2007;316(5825):747–50.CrossRefADSGoogle Scholar
  39. 39.
    Moss DA, Leonhard M, Bauscher M, Mäntele W. Electrochemical redox titration of cofactors in the reaction center from Rhodobacter sphaeroides. FEBS Lett. 1991;283(1):33–6.CrossRefGoogle Scholar
  40. 40.
    Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW, Allen JP. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1992;31(45):11029–37.CrossRefGoogle Scholar
  41. 41.
    Nagarajan V, Parson WW, Davis D, Schenck CC. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry. 1993;32(46):12324–36.CrossRefGoogle Scholar
  42. 42.
    Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC. Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1994;91(22):10265–9.CrossRefADSGoogle Scholar
  43. 43.
    Dutton PL, Petty KM, Bonner HS, Morse SD. Cytochrome c 2 and reaction center of Rhodopseudomonas sphaeroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics, and electric field alterations. Biochim Biophys Acta. 1975;387(3):536–56.CrossRefGoogle Scholar
  44. 44.
    Lin X, Williams JC, Allen JP, Mathis P. Relationship between rate and free energy difference for electron transfer from cytochrome c 2 to the reaction center in Rhodobacter sphaeroides. Biochemistry. 1994;33(46):13517–23.CrossRefGoogle Scholar
  45. 45.
    Nitschke W, Dracheva SM. Reaction center associated cytochromes. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.Google Scholar
  46. 46.
    Alric J, Cuni A, Maki H, Nagashima KVP, Verméglio A, Rappaport F. Electrostatic interaction between redox cofactors in photosynthetic reaction centers. J Biol Chem. 2004;279(46):47849–55.CrossRefGoogle Scholar
  47. 47.
    Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP. Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 2001;40(50):15403–7.CrossRefGoogle Scholar
  48. 48.
    Johnson ET, Parson WW. Electrostatic interactions in an integral membrane protein. Biochemistry. 2002;41(20):6483–94.CrossRefGoogle Scholar
  49. 49.
    Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B. 2002;106(45):11859–69.Google Scholar
  50. 50.
    Muegge I, Apostolakis J, Ermler U, Fritzsch G, Lubitz W, Knapp EW. Shift of the special pair redox potential: electrostatic energy computations of mutants of the reaction center from Rhodobacter sphaeroides. Biochemistry. 1996;35(25):8359–70.CrossRefGoogle Scholar
  51. 51.
    Stocker JW, Taguchi AKW, Murchison HA, Woodbury NW, Boxer SG. Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry. 1992;31(42):10356–62.CrossRefGoogle Scholar
  52. 52.
    Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW, Williams JC. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry. 1993;32(13):3498–505.CrossRefGoogle Scholar
  53. 53.
    Spiedel D, Roszak AW, McKendrick K, McAuley KE, Fyfe PK, Nabedryk E, Breton J, Robert B, Cogdell RJ, Isaacs NW, Jones MR. Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure. Biochim Biophys Acta. 2002;1554(1–2):75–93.CrossRefGoogle Scholar
  54. 54.
    Arlt T, Bibikova M, Penzkofer H, Oesterhelt D, Zinth W. Strong acceleration of primary photosynthetic electron transfer in a mutated reaction center of Rhodopseudomonas viridis. J Phys Chem. 1996;100(29):12060–5.Google Scholar
  55. 55.
    Nabedryk E, Allen JP, Taguchi AKW, Williams JC, Woodbury NW, Breton J. Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131. Biochemistry. 1993;32(50):13879–85.CrossRefGoogle Scholar
  56. 56.
    Mattioli TA, Williams JC, Allen JP, Robert B. Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry. 1994;33(7):1636–43.CrossRefGoogle Scholar
  57. 57.
    Thielges M, Uyeda G, Cámara-Artigas A, Kálmán L, Williams JC, Allen JP. Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry. 2005;44(20):7389–94.CrossRefGoogle Scholar
  58. 58.
    Lancaster CRD, Bibikova MV, Sabatino P, Oesterhelt D, Michel H. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-Å resolution. J Biol Chem. 2000;275(50):39364–8.CrossRefGoogle Scholar
  59. 59.
    Plato M, Lendzian F, Lubitz W, Möbius K. Molecular orbital study of electronic asymmetry in primary donors of bacterial reaction centers. In: Breton J, Verméglio A, editors. The photosynthetic bacterial reaction center II: structure, spectroscopy, and dynamics. New York: Plenum; 1992.Google Scholar
  60. 60.
    Breton J, Nabedryk E, Parson WW. A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls. Biochemistry. 1992;31(33):7503–10.CrossRefGoogle Scholar
  61. 61.
    Huber M. On the electronic structure of the primary electron donor in bacterial photosynthesis—the bacteriochlorophyll dimer as viewed by EPR/ENDOR methods. Photosynth Res. 1997;52(1):1–26.CrossRefGoogle Scholar
  62. 62.
    Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP, Lubitz W. ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry. 1995;34(25):8130–43.CrossRefGoogle Scholar
  63. 63.
    Artz K, Williams JC, Allen JP, Lendzian F, Rautter J, Lubitz W. Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1997;94(25):13582–7.CrossRefADSGoogle Scholar
  64. 64.
    Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W. Pigment-protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B. 2002;106(12):3226–36.Google Scholar
  65. 65.
    Reimers JR, Hush NS. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis. J Am Chem Soc. 2004;126(13):4132–44.CrossRefGoogle Scholar
  66. 66.
    Bylina EJ, Youvan DC. Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci U S A. 1988;85(19):7226–30.CrossRefADSGoogle Scholar
  67. 67.
    Kirmaier C, Holten D, Bylina EJ, Youvan DC. Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci U S A. 1988;85(20):7562–6.CrossRefADSGoogle Scholar
  68. 68.
    McDowell LM, Gaul D, Kirmaier C, Holten D, Schenck CC. Investigation into the source of electron transfer asymmetry in bacterial reaction centers. Biochemistry. 1991;30(34):8315–22.CrossRefGoogle Scholar
  69. 69.
    van Brederode ME, van Stokkum IHM, Katilius E, van Mourik F, Jones MR, van Grondelle R. Primary charge separation routes in the BChl:BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry. 1999;38(23):7545–55.CrossRefGoogle Scholar
  70. 70.
    King BA, de Winter A, McAnaney TB, Boxer SG. Excited state energy transfer pathways in photosynthetic reaction centers. 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B. 2001;105(9):1856–62.Google Scholar
  71. 71.
    Camara-Artigas A, Magee C, Goetsch A, Allen JP. The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 Å resolution. Photosynth Res. 2002;74(1):87–93.CrossRefGoogle Scholar
  72. 72.
    Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn M, Lubitz W. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1996;35(21):6612–9.CrossRefGoogle Scholar
  73. 73.
    Zhou H, Boxer SG. Charge resonance effects on electronic absorption line shapes: application to the heterodimer absorption of bacterial photosynthetic reaction centers. J Phys Chem B. 1997;101(29):5759–66.Google Scholar
  74. 74.
    Treynor TP, Andrews SS, Boxer SG. Intervalence band Stark effect of the special pair radical cation in bacterial photosynthetic reaction centers. J Phys Chem B. 2003;107(40):11230–9.Google Scholar
  75. 75.
    Klimov VV, Allakhverdiev SI, Demeter S, Krasnovskii AA. Photoreduction of pheophytin in photosystem 2 of chloroplasts with respect to redox potential of the medium. Dokl Akad Nauk SSSR. 1979;249(1):227–30.Google Scholar
  76. 76.
    Ishikita H, Saenger W, Biesiadka J, Loll B, Knapp EW. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proc Natl Acad Sci U S A. 2006;103(26):9855–60.CrossRefADSGoogle Scholar
  77. 77.
    Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen JR, Ishikita H. Distribution of the cationic state over the chlorophyll pair of the photosystem II reaction center. J Am Chem Soc. 2011;133(36):14379–88.CrossRefGoogle Scholar
  78. 78.
    Takahashi R, Hasegawa K, Noguchi T. Effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II as studied by density functional theory calculations. Biochemistry. 2008;47(24):6289–91.CrossRefGoogle Scholar
  79. 79.
    Tommos C, Babcock GT. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000;1458(1):199–219.CrossRefGoogle Scholar
  80. 80.
    Kálmán L, Thielges MC, Williams JC, Allen JP. Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Biochemistry. 2005;44(40):13266–73.CrossRefGoogle Scholar
  81. 81.
    Kálmán L, Williams JC, Allen JP. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers. Biochemistry. 2011;50(16):3310–20.CrossRefGoogle Scholar
  82. 82.
    Allen JP, Olson TL, Oyala P, Lee WJ, Tufts A, Williams JC. Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers. Proc Natl Acad Sci U S A. 2012;109(7):2314–8.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations