Advertisement

Effects of Quasi-Equilibrium States on the Kinetics of Electron Transfer and Radical Pair Stabilisation in Photosystem I

  • Stefano SantabarbaraEmail author
  • Robert Jennings
  • Giuseppe Zucchelli
Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 11)

Abstract

Reaction centres are the sites of primary energy conversion in photosynthesis. The energy of the absorbed photon is trapped photochemically, with high quantum yields, in the form of electrochemical potential in a radical pair, which is then stabilised by a cascade of electron transfer (ET) reactions. These occur through a chain of redox-active cofactors that are coordinated by the reaction centre protein subunits. It is commonly considered that each of the electron transfer steps in the redox chain is associated with a significant driving force and, hence, a relatively large, negative, standard free energy difference (ΔG 0 ≤ − 100 meV). In this scenario, the rate of the reverse reaction which describes the repopulation of the precursor is several orders of magnitude smaller than that of forward electron transfer. Hence, the actual electron transfer rate between each given pair of donor and acceptor molecules is determined almost exclusively by the molecular rate constant of the forward reaction.

However, at least for a few steps in the redox chains of both photosystem I and photosystem II, the driving force is not large and often comparable to or lower than the thermal energy at physiological temperatures. In this case, the rate constant of the backward reaction, which is determined by the equilibrium constant, is of the same order of magnitude as that of the forward electron step and hence cannot be neglected. This, in turn, has a profound impact in determining the effective electron transfer rate that can be significantly slower than that of the molecular rate for forward ET.

In this chapter we discuss some aspects of electron transfer reactions in photosystem I, in particular the steps in which reversibility determines the effective ET rate.

Keywords

Electron transfer Reversible reaction Photosystem I Photochemical reactions Phyllo(semi)quinone oxidation Kinetic modelling 

Notes

Acknowledgements

S.S. wishes to thank Drs. Saul Purton (University College London), Fabrice Rappaport (Institut de Biologie Physico-Chimique, Paris) and Kevin Redding (Arizona State University) for useful and constructive discussion on some of the issues discussed here in the course of collaborative studies. We also wish to thank Dr. Anna Paola Casazza (IBBA, CNR, Milan) for discussion and useful suggestion on editing this chapter.

References

  1. 1.
    Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic photosystem I. Biochim Biophys Acta. 2001;1507:41–60.Google Scholar
  2. 2.
    Jensen PE, Haldrup A, Rosgaard L, Scheller HV. Molecular dissection of photosystem I in higher plants: topology structure and function. Physiol Plant. 2003;119:313–21.Google Scholar
  3. 3.
    Fromme P, Jordan P, Krauss N. Structure of photosystem I. Biochim Biophys Acta. 2001;1507:5–31.Google Scholar
  4. 4.
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature. 2001;411:909–17.ADSGoogle Scholar
  5. 5.
    Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426:630–5.ADSGoogle Scholar
  6. 6.
    Vassiliev IR, Antonkine ML, Golbeck JH. Iron-sulfur clusters in type I reaction centers. Biochim Biophys Acta. 2001;1507:139–60.Google Scholar
  7. 7.
    Kruip J, Bald D, Boekema E, Rögner M. Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res. 1994;40:279–86.Google Scholar
  8. 8.
    Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN, Holzwarth AR. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry. 1999;36:13830–7.Google Scholar
  9. 9.
    Gobets B, van Grondelle R. Energy transfer and trapping in Photosystem I. Biochim Biophys Acta. 2001;1507:80–99.Google Scholar
  10. 10.
    Sener MK, Park S, Lu D, Damjanovic A, Ritz T, Fromme P, Schulten K. Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys. 2004;120:11183–95.ADSGoogle Scholar
  11. 11.
    Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R, Schulten K. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J. 2005;89:1630–42.Google Scholar
  12. 12.
    Jansson S. The light harvesting Chlorophyll a/b binding proteins. Biochim Biophys Acta. 1994;1184:1–19.Google Scholar
  13. 13.
    Jennings RC, Bassi R, Zucchelli G. Antenna structure and energy transfer in higher plant photosystems. In: Mattay J, editor. Topics in current chemistry. Berlin: Spinger-Verlag; 1996. p. 147–81.Google Scholar
  14. 14.
    Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R. The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta. 2002;1556:29–40.Google Scholar
  15. 15.
    Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta. 2005;1706:12–39.Google Scholar
  16. 16.
    Galka P, Santabarbara S, Khuong TT, Degand H, Morsomme P, Jennings RC, Boekema EJ, Caffarri S. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell. 2012;24:2963–78.Google Scholar
  17. 17.
    Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC. Excited state equilibration in the photosystem I light harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry. 1996;35:8572–9.Google Scholar
  18. 18.
    Jansson S, Andersen B, Sheller HV. Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol. 1996;112:409–20.Google Scholar
  19. 19.
    Glazer AN. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77.Google Scholar
  20. 20.
    Kok B. On the reversible absorption change at 705 nm in photosynthetic organisms. Biochim Biophys Acta. 1956;22:394–401.Google Scholar
  21. 21.
    Döring G, Bailey JR, Kreutz W, Weikard J, Witt HT. Some new results in photosynthesis. Naturwissenschaften. 1968;55:219–24.ADSGoogle Scholar
  22. 22.
    Brettel K. Electron transfer and arrangement of the redox cofactor in photosystem I. Biochim Biophys Acta. 1997;1318:322–73.Google Scholar
  23. 23.
    Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: the phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. Biochim Biophys Acta. 2005;1708:283–310.Google Scholar
  24. 24.
    Beddard GS. Exciton coupling in the Photosystem I reaction center. J Phys Chem B. 1998;102:10966–73.Google Scholar
  25. 25.
    Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J. 2003;85:3899–922.Google Scholar
  26. 26.
    Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth AR. Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys J. 2008;94:3601–12.Google Scholar
  27. 27.
    Holzwarth AR, Müller MG, Niklas J, Lubitz W. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J. 2006;90:552–65.Google Scholar
  28. 28.
    Müller MG, Slavov C, Luthra R, Redding KE, Holzwarth AR. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc Natl Acad Sci U S A. 2010;107:4123–8.ADSGoogle Scholar
  29. 29.
    Schatz GH, Brock H, Holzwarth AR. Kinetic and energetic model for the primary processes in photosystem II. Biophys J. 1998;54:397–405.Google Scholar
  30. 30.
    Schatz GH, Brock H, Holzwarth AR. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci U S A. 1987;84:8414–8.ADSGoogle Scholar
  31. 31.
    Santabarbara S, Galuppini L. Electron and energy transfer in the photosystem I of cyanobacteria: insight from compartmental kinetic modelling. In: Gaul PM, Marler HJ, editors. Handbook on cyanobacteria: biochemistry, biotechnology and application. Hauppauge, NY: Nova Science Publisher; 2009. p. 1–50.Google Scholar
  32. 32.
    Srinivasan N, Golbeck JH. Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. Biochim Biophys Acta. 2009;1787:1057–88.Google Scholar
  33. 33.
    Brettel K, Vos MH. Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I. FEBS Lett. 1999;447:315–7.Google Scholar
  34. 34.
    Hecks B, Wulf K, Breton J, Leibl W, Trissl HW. Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700 +A0 and P700 +A1 formation. Biochemistry. 1994;33:8619–24.Google Scholar
  35. 35.
    Rappaport F, Diner BA, Redding K. Optical measurements of secondary electron transfer in photosystem I. In: Golbeck JH, editor. Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Dordrecht: Kluwer Academic Publishers; 2006. p. 223–44.Google Scholar
  36. 36.
    Redding K, van der Est A. The directionality of electron transport in photosystem I. In: Golbeck JH, editor. Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Dordrecht: Kluwer Academic Publishers; 2006. p. 413–37.Google Scholar
  37. 37.
    Santabarbara S, Galuppini L, Casazza AP. Bidirectional electron transfer in the reaction centre of photosystem I. J Integr Plant Biol. 2010;52:735–49.Google Scholar
  38. 38.
    Joliot P, Joliot A. In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry. 1999;38:11130–6.Google Scholar
  39. 39.
    Brettel K. Electron transfer from acceptor A1 to the iron-sulfur cluster in photosystem I measured with a time resolution of 2 ns. In: Garab G, editor. Photosynthesis: mechanisms and effects, vol 1. Dordrecht, The Netherlands: Kluwer Academic Publishing; 1998. p. 611–5.Google Scholar
  40. 40.
    Marcus RA, Sutin N. Electron transfer in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.Google Scholar
  41. 41.
    Devault D. Quantum mechanical tunnelling in biological systems. Cambridge: Cambridge University Press; 1980.Google Scholar
  42. 42.
    Hopfield JJ. Electron transfer between biological molecules by thermally activated tunnelling. Proc Natl Acad Sci U S A. 1974;71:3640–4.ADSGoogle Scholar
  43. 43.
    Jortner J. Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys. 1976;64:4860–8.ADSGoogle Scholar
  44. 44.
    Evans MCW, Reeves SG, Cammack R. Determination of the oxidation-reduction potential of the bound iron–sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett. 1974;49:111–4.Google Scholar
  45. 45.
    Chamorowsky SK, Cammack R. Direct determination of the midpoint potential of the acceptor X in chloroplast Photosystem I by electrochemical reduction and electron spin resonance. Photochem Photobiophys. 1982;4:195–200.Google Scholar
  46. 46.
    Ke B, Bulen WA, Shaw ER, Breeze RH. Determination of oxidation-reduction potentials by spectropolarimetric titration: application to several iron-sulfur proteins. Arch Biochem Biophys. 1974;162:301–9.Google Scholar
  47. 47.
    Nugent JH, Moller BL, Evans MCW. Comparison of the EPR properties of photosystem I iron-sulphur centres A and B in spinach and barley. Biochim Biophys Acta. 1981;634:249–55.Google Scholar
  48. 48.
    Jordan R, Nessau U, Schlodder E. Charge recombination between the reduced iron-sulphur centres and P700+. In: Garab G, editor. Photosynthesis: mechanism and effects. Dordrecht, The Netherlands: Kluwer Academic Publisher; 1998. p. 663–7.Google Scholar
  49. 49.
    Ke B. The primary electron acceptor of photosystem I. Biochim Biophys Acta. 1973;301:1–33.Google Scholar
  50. 50.
    Golbeck JH, Parrett KG, McDermott AE. Photosystem I charge separation in the absence of center A and B. III. Biochemical characterization of a reaction center particle containing P-700 and FX. Biochim Biophys Acta. 1987;893:149–60.Google Scholar
  51. 51.
    Munge B, Das SK, Llagan R, Pendon Z, Yang J, Frank HA, Rusling JF. Electron transfer reactions of redox cofactors in spinach Photosystem I reaction centre proteins in lipid films on electrodes. J Am Chem Soc. 2003;125:12457–63.Google Scholar
  52. 52.
    Ishikita H, Knapp EW. Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem. 2003;278:52002–11.Google Scholar
  53. 53.
    Karyagina I, Pushkar Y, Stehlik D, van der Est A, Ishikita H, Knapp EW, Jagannathan B, Agalarov R, Golbeck JH. Contributions of the protein environment to the midpoint potentials of the A1 phylloquinones and the Fx iron-sulfur cluster in photosystem I. Biochemistry. 2007;46:10804–16.Google Scholar
  54. 54.
    Ptushenko VV, Cherepanov DA, Krishtalik LI, Semenov AY. Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynth Res. 2008;97:55–74.Google Scholar
  55. 55.
    Moser CC, Dutton PL. Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim Biophys Acta. 1992;1101:171–6.Google Scholar
  56. 56.
    Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL. Nature of biological electron transfer. Nature. 1992;355:796–802.ADSGoogle Scholar
  57. 57.
    Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999;402:47–52.ADSGoogle Scholar
  58. 58.
    Warshel A, Russel ST. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984;17:283–422.Google Scholar
  59. 59.
    Warshel A, Parson WW. Computer simulations of electron transfer reactions in solution and in photosynthetic reaction centers. Annu Rev Phys Chem. 1991;42:279–309.ADSGoogle Scholar
  60. 60.
    Sharp KA. Calculation of electron transfer reorganisation energy using the finite difference Poisson–Boltzmann model. Biophys J. 1988;73:1241–50.Google Scholar
  61. 61.
    Ivashin N, Larsson S. Electron transfer pathways in Photosystem I reaction centers. Chem Phys Lett. 2003;375:383–7.ADSGoogle Scholar
  62. 62.
    Petrenko A, Redding K. Intermolecular electron transfer and exchange integrals in photosystem I. Chem Phys Lett. 2004;400:98–103.ADSGoogle Scholar
  63. 63.
    Renger T, Schlodder E. Modeling the optical spectra and light harvesting in photosystem I. In: Golbeck JH, editor. Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Dordrecht, The Netherlands.: Kluwer Academic Publishers; 2006. p. 595–610.Google Scholar
  64. 64.
    Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC. The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth Res. 1999;60:209–15.Google Scholar
  65. 65.
    Engelmann E, Zucchelli G, Casazza AP, Brogioli D, Garlaschi FM, Jennings RC. Influence of the photosystem I-light harvesting complex I antenna domains on fluorescence decay. Biochemistry. 2006;45:6947–55.Google Scholar
  66. 66.
    Jennings RC, Zucchelli G, Croce R, Garlaschi FM. The photochemical trapping rate from red spectral states in PSI–LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. Biochim Biophys Acta. 2003;1557:91–8.Google Scholar
  67. 67.
    Ihalainen JA, van Stokkum IH, Gibasiewicz K, Germano M, van Grondelle R, Dekker JP. Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta. 2005;1706:267–75.Google Scholar
  68. 68.
    Melkozernov AN. Excitation energy transfer in Photosystem I from oxygenic organisms. Photosynth Res. 2001;70:129–53.Google Scholar
  69. 69.
    Croce R, Dorra D, Holzwarth AR, Jennings RC. Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry. 2000;39:6341–8.Google Scholar
  70. 70.
    Jennings RC, Zucchelli G, Santabarbara S. Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI-LHCI). Biochim Biophys Acta. 1827;2013:779–85.Google Scholar
  71. 71.
    Di Donato M, Stahl AD, van Stokkum IH, van Grondelle R, Groot ML. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy. Biochemistry. 2011;50:480–90.Google Scholar
  72. 72.
    Miloslavina Y, Szczepaniak M, Müller MG, Sander J, Nowaczyk M, Rögner M, Holzwarth AR. Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry. 2006;45:2436–42.Google Scholar
  73. 73.
    Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J, Rögner M. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci U S A. 2006;103:6895–8900.ADSGoogle Scholar
  74. 74.
    Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WF, Chisholm DA. Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry. 2001;40:9265–81.Google Scholar
  75. 75.
    Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol. 2002;53:551–80.Google Scholar
  76. 76.
    van Brederode ME, van Grondelle R. New and unexpected routes for ultrafast electron transfer in photosynthetic reaction centers. FEBS Lett. 1999;455:1–7.Google Scholar
  77. 77.
    Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60.ADSGoogle Scholar
  78. 78.
    Ramesh VM, Guergova-Kuras M, Joliot P, Webber AN. Electron transfer from plastocyanin to the photosystem I reaction center in mutants with increased potential of the primary donor in Chlamydomonas reinhardtii. Biochemistry. 2002;41:14652–8.Google Scholar
  79. 79.
    Santabarbara S, Redding KE, Rappaport F. Temperature dependence of the reduction of P700 + by tightly bound plastocyanin in vivo. Biochemistry. 2009;48:10457–66.Google Scholar
  80. 80.
    Vos MH, van Gorkom HJ. Thermodynamics of electron transfer in Photosystem I studied by electric field-stimulated charge recombination. Biochim Biophys Acta. 1988;934:293–302.Google Scholar
  81. 81.
    Kleinherenbrink FA, Hastings G, Wittmerhaus BP, Blankenship RE. Delayed fluorescence from Fe-S type photosynthetic reaction centers at low redox potential. Biochemistry. 1994;33:3096–105.Google Scholar
  82. 82.
    Shibata Y, Akai S, Kasahara T, Ikegami I, Itoh S. Temperature-dependent energy gap of the primary charge separation in photosystem I: study of delayed fluorescence at 77–268 K. J Phys Chem B. 2008;112:6695–702.Google Scholar
  83. 83.
    Agalarov R, Brettel K. Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: only the slower phase is activated. Biochim Biophys Acta. 2003;1604:7–12.Google Scholar
  84. 84.
    Schlodder E, Falkenberg K, Gergeleit M, Brettel K. Temperature dependence of forward and reverse electron transfer from A1 , the reduced secondary electron acceptor in photosystem I. Biochemistry. 1998;37:9466–76.Google Scholar
  85. 85.
    Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P, Redding K. Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci U S A. 2001;98:4437–42.ADSGoogle Scholar
  86. 86.
    Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B, Golbeck JH. Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem. 2003;278:27876–87.Google Scholar
  87. 87.
    Byrdin M, Santabarbara S, Gu F, Fairclough WV, Heathcote P, Redding K, Rappaport F. Assignment of a kinetic component to electron transfer between iron-sulfur clusters FX and FA/B of Photosystem I. Biochim Biophys Acta. 2006;1757:1529–38.Google Scholar
  88. 88.
    Santabarbara S, Jasaitis A, Byrdin M, Gu F, Rappaport F, Redding KE. Additive effect of mutations affecting the rate of phylloquinone reoxidation and directionality of electron transfer within photosystem I. Photochem Photobiol. 2008;84:1381–7.Google Scholar
  89. 89.
    Santabarbara S, Reifschneider K, Jasaitis A, Gu F, Agostini G, Carbonera D, Rappaport F, Redding KE. Interquinone electron transfer in photosystem I as evidenced by altering the hydrogen bond strength to the phylloquinone(s). J Phys Chem B. 2010;114:9300–12.Google Scholar
  90. 90.
    Srinivasan N, Santabarbara S, Rappaport F, Carbonera D, Redding K, van der Est A, Golbeck JH. Alteration of the H-bond to the A1A phylloquinone in Photosystem I: influence on the kinetics and energetics of electron transfer. J Phys Chem B. 2011;115:1751–9.Google Scholar
  91. 91.
    Mula S, McConnell MD, Ching A, Zhao N, Gordon HL, Hastings G, Redding KE, van der Est A. Introduction of a hydrogen bond between phylloquinone PhQA and a threonine side-chain OH group in photosystem I. J Phys Chem B. 2012;116:14008–16.Google Scholar
  92. 92.
    Ramesh VM, Gibasiewicz K, Lin S, Bingham SE, Webber AN. Replacement of the methionine axial ligand to the primary electron acceptor A0 slows the A0 reoxidation dynamics in photosystem I. Biochim Biophys Acta. 2007;1767:151–60.Google Scholar
  93. 93.
    Giera W, Gibasiewicz K, Ramesh VM, Lin S, Webber A. Electron transfer from A to A1 in Photosystem I from Chlamydomonas reinhardtii occurs in both the A and B branch with 25-30 ps lifetime. Phys Chem Chem Phys. 2009;11:5186–91.Google Scholar
  94. 94.
    Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW, Webber AN. Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J. 2003;85:2547–59.Google Scholar
  95. 95.
    Xu W, Chitnis P, Valieva A, van der Est A, Pushkar YN, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G, Golbeck JH. Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem. 2003;278:27864–75.Google Scholar
  96. 96.
    Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar Y, Stehlik D. Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry. 2004;43:4741–54.Google Scholar
  97. 97.
    Santabarbara S, Kuprov I, Fairclough WV, Purton S, Hore PJ, Heathcote P, Evans MCW. Bidirectional electron transfer in photosystem I: determination of two distances between P700 + and A1 in spin-correlated radical pairs. Biochemistry. 2005;44:2119–28.Google Scholar
  98. 98.
    Santabarbara S, Kuprov I, Hore PJ, Casal A, Heathcote P, Evans MCW. Analysis of the spin-polarized electron spin echo of the [P700 + A1 ] radical pair of photosystem I indicates that both reaction center subunits are competent in electron transfer in cyanobacteria, green algae, and higher plants. Biochemistry. 2006;45:7389–403.Google Scholar
  99. 99.
    Poluektov OG, Paschenko SV, Utschig LM, Lakshmi KV, Thurnauer MC. Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. J Am Chem Soc. 2005;127:11910–1.Google Scholar
  100. 100.
    Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, Evans MCW. Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model. J Phys Chem B. 2010;114:15158–71.Google Scholar
  101. 101.
    Ali K, Santabarbara S, Heathcote P, Evans MCW, Purton S. Bidirectional electron transfer in photosystem I: replacement of the symmetry-breaking tryptophan close to the PsaB-bound phylloquinone A1B with a glycine residue alters the redox properties of A1B and blocks forward electron transfer at cryogenic temperatures. Biochim Biophys Acta. 2006;1757:1623–33.Google Scholar
  102. 102.
    Berthold T, von Gromoff ED, Santabarbara S, Stehle P, Link G, Poluektov OG, Heathcote P, Beck CF, Thurnauer MC, Kothe G. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700 +A1B in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures. J Am Chem Soc. 2012;134:5563–76.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefano Santabarbara
    • 1
    • 2
    Email author
  • Robert Jennings
    • 2
  • Giuseppe Zucchelli
    • 1
  1. 1.Consiglio Nazionale delle RicercheIstituto di Biofisica, Sede di MilanoMilanoItaly
  2. 2.Dipartimento di BiologiaUniversitá degli Studi di MilanoMilanoItaly

Personalised recommendations