Skip to main content

Tunneling in Electron Transport

  • Chapter
  • First Online:
Book cover The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

  • 2285 Accesses

Abstract

Light excitation of chlorophylls and bacteriochlorophylls creates strong reductants to initiate guided electron transfer through chains of redox centers, converting light energy into electrostatic and chemical redox energy and largely avoiding the threat of charge recombination unless useful. Most electron-transfer reactions of photosynthesis are single-electron transfers between well-separated redox centers via electron tunneling through the insulating intervening protein medium. Tunneling rates are dominated by an exponential dependence on the edge-to-edge distance between cofactors. There is an approximately Gaussian dependence of rate on driving force, with a peak rate at the reorganization energy, as defined by classical Marcus theory and modified to include quantum effects. Complex quantum theoretical rate dependencies are well approximated by a simple empirical expression with three parameters: distance, driving force, and reorganization energy. Natural selection exploits distance and driving force to speed desirable electron transfers or slow undesirable electron transfer. Redox centers engaged in productive electron transfer are placed less than 14 Å apart. Natural photosynthetic proteins are far from ideal: they have high yields but a superabundance of cofactors and relatively large energy losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

NADH:

Reduced nicotinamide adenine dinucleotide

PSI:

Photosystem I

PSII:

Photosystem II

λ:

Reorganization energy

ΔG:

Free energy of reaction

ℏω:

Characteristic frequency of vibration coupled to electron transfer

References

  1. Byrdin M, Lukacs A, Thiagarajan V, Eker APM, Brettel K, Vos MH. Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain. J Phys Chem A. 2010;114(9):3207–14.

    Google Scholar 

  2. Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, et al. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem. 2005;280(20):19437–40.

    Article  Google Scholar 

  3. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J. Kinetics and pathways of charge recombination in photosystem II. Biochemistry. 2002;41(26):8518–27.

    Article  Google Scholar 

  4. Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, et al. Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry. 2000;39(42):13012–25.

    Article  Google Scholar 

  5. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature. 2001;411(6840):909–17.

    Article  ADS  Google Scholar 

  6. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;303(5665):1831–8.

    Article  ADS  Google Scholar 

  7. Deisenhofer J, Epp O, Sinning H, Michel H. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from rhodopseudomonas viridis. J Mol Biol. 1995;246:429–57.

    Article  Google Scholar 

  8. Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguch M, et al. Effects of substituents on synthetic analogs of chlorophylls. Part 1: synthesis, vibrational properties and excited-state decay characteristics. Photochem Photobiol. 2007;83(5):1110–24.

    Article  Google Scholar 

  9. Rutherford AW, Osyczka A, Rappaport F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O-2. FEBS Lett. 2012;586(5):603–16.

    Article  Google Scholar 

  10. Gorman AA, Rodgers MAJ. Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B. 1992;14(3):159–76.

    Article  Google Scholar 

  11. Sies H, Menck CFM. Singlet oxygen induced DNA damage. Mutat Res. 1992;275(3–6):367–75.

    Article  Google Scholar 

  12. Trebst A, Depka B, Hollander-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett. 2002;516(1–3):156–60.

    Article  Google Scholar 

  13. Pross A. The single electron shift as a fundamental process in organic chemistry: the relationship between polar and electron-transfer pathways. Acc Chem Res. 1985;18:212–9.

    Article  Google Scholar 

  14. Eberson L. Electron transfer reactions in organic chemistry. New York: Springer-Verlag; 1987. 234 p.

    Book  Google Scholar 

  15. Devault D. Quantum-mechanical tunnelling in biological-systems. Q Rev Biophys. 1980;13(4):387–564.

    Article  Google Scholar 

  16. Devault D, Chance B. Studies of photosynthesis using a pulsed laser. I Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling. Biophys J. 1966;6(6):825–47.

    Article  Google Scholar 

  17. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL. Nature of biological electron-transfer. Nature. 1992;355(6363):796–802.

    Article  ADS  Google Scholar 

  18. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107–15.

    ADS  Google Scholar 

  19. Zwolinski BJ, Marcus RJ, Eyring H. Inorganic oxidation-reduction reactions in solution-electron transfers. Chem Rev. 1955;55(1):157–80.

    Article  Google Scholar 

  20. Moser CC, Anderson JLR, Dutton PL. Guidelines for tunneling in enzymes. Biochim Biophys Acta. 2010;1797(8):1573–86.

    Article  Google Scholar 

  21. Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer: I. J Chem Phys. 1956;24:966–78.

    ADS  Google Scholar 

  22. Gunner MR, Dutton PL. Temperature and -delta-G-degrees dependence of the electron-transfer from Bph.- to Qa in Reaction center protein from rhodobacter-sphaeroides with different quinones as Qa. J Am Chem Soc. 1989;111(9):3400–12.

    Article  Google Scholar 

  23. Iwaki M, Kumazaki S, Yoshihara K, Erabi T, Itoh S. Delta G(0) dependence of the electron transfer rate in the photosynthetic reaction center of plant photosystem I: Natural optimization of reaction between chlorophyll a (A(0)) and quinone. J Phys Chem. 1996;100(25):10802–9.

    Google Scholar 

  24. Lin X, Williams JC, Allen JP, Mathis P. Relationship between rate and free-energy difference for electron-transfer from cytochrome C(2) to the reaction-center in rhodobacter-sphaeroides. Biochemistry. 1994;33(46):13517–23.

    Article  Google Scholar 

  25. Woodbury NW, Parson WW, Gunner MR, Prince RC, Dutton PL. Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta. 1986;851(1):6–22.

    Article  Google Scholar 

  26. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC. Specific alteration of the oxidation potential of the electron-donor in reaction centers from rhodobacter-sphaeroides. Proc Natl Acad Sci U S A. 1994;91(22):10265–9.

    Article  ADS  Google Scholar 

  27. Hopfield JJ. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974;71:3640–4.

    Article  ADS  Google Scholar 

  28. Jortner J. Temperature-dependent activation-energy for electron-transfer between biological molecules. J Chem Phys. 1976;64(12):4860–7.

    ADS  Google Scholar 

  29. Crofts AR, Rose S. Marcus treatment of endergonic reactions: a commentary. Biochim Biophy Acta. 2007;1767(10):1228–32.

    Article  Google Scholar 

  30. Moser CC, Chobot SE, Page CC, Dutton PL. Distance metrics for heme protein electron tunneling. Biochim Biophy Acta. 2008;1777(7–8):1032–7.

    Article  Google Scholar 

  31. Page CC, Moser CC, Chen XX, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999;402(6757):47–52.

    Article  ADS  Google Scholar 

  32. Evans MCW, Heathcote P. Effects of glycerol on the redox properties of the electron-acceptor complex in spinach photosystem-I particles. Biochim Biophy Acta. 1980;590(1):89–96.

    Article  Google Scholar 

Download references

Acknowledgments

This didactic account is the result of the development of engineering for man-made oxidoreductases of the kind proposed in Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-05ER46223], and the US National Institutes of Health, General Medical Institutes [RO1 GM 41048]. The support from each is nearly equal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Moser Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moser, C.C. (2014). Tunneling in Electron Transport. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_4

Download citation

Publish with us

Policies and ethics