Skip to main content

Water and Oxygen Diffusion Pathways Within Photosystem II. Computational Studies of Controlled Substrate Access and Product Release

  • Chapter
  • First Online:
The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

  • 2242 Accesses

Abstract

The problem of finding and characterizing channels responsible for controlling the movement of small molecules within protein complexes is addressed, using photosystem II (PSII) of photosynthesis as an example. The shortcomings of traditional methods of searching for channels in static crystallographic structures are discussed. Basic concepts and advantages of molecular dynamics (MD) simulations and existing computational approaches based on MD structures to finding water channels are introduced. The use of MD to observe water diffusion within proteins, visualize water flow, and localize water channels is described. This is followed by more detailed characterization and analysis of the found channels, with respect to their permitivity for water. The second part of the chapter focuses on oxygen channels within PSII. The experimental and computational techniques for characterization of oxygen channels in proteins are reviewed. A powerful computational technique, based on analysis of 3D energy maps, is introduced. The construction of oxygen 3D free energy maps for PSII and their analysis using a wavefront propagation technique is described to find oxygen diffusion pathways and characterize the rate of oxygen diffusion within PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber J. Photosystem II: the engine of life. Q Rev Biophys. 2003;36:71–89.

    Article  Google Scholar 

  2. Govindjee. Photosystem II: the light-driven water: plastoquinone oxidoreductase, edited by Thomas J. Wydrzynski and Kimiyuki Satoh, Volume 22, Advances in Photosynthesis and Respiration, Springer, Dordrecht, The Netherlands. Photosynth Res. 2006;87:331–5.

    Article  Google Scholar 

  3. Joliot P, Barbieri G, Chabaud R. A new model of photochemical centers in system-2. Photochem Photobiol. 1969;10:309.

    Article  Google Scholar 

  4. Kok B, Forbush B, McGloin M. Cooperation of charges in photosynthetic O2 evolution. 1. A linear four step mechanism. Photochem Photobiol. 1970;11:457–75.

    Article  Google Scholar 

  5. Wydrzynski T, Hillier W, Messinger J. On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. Physiol Plant. 1996;96:342–50.

    Article  Google Scholar 

  6. Radmer R, Ollinger O. Topography of the O-2-evolving site determined with water analogs. FEBS Lett. 1983;152:39–43.

    Article  Google Scholar 

  7. Force DA, Randall DW, Lorigan GA, Clemens KL, Britt RD. ESEEM studies of alcohol binding to the manganese cluster of the oxygen evolving complex of Photosystem II. J Am Chem Soc. 1998;120:13321–33.

    Article  Google Scholar 

  8. Anderson JM, Chow WS. Structural and functional dynamics of plant photosystem II. Phil Trans Roy Soc Lond B. 2002;357:1421–30.

    Article  Google Scholar 

  9. Wraight CA. Chance and design - proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta Bioenerg. 2006;1757:886–912.

    Article  Google Scholar 

  10. Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. 2006;7:316.

    Article  Google Scholar 

  11. Haranczyk M, Sethian JA. Navigating molecular worms inside chemical labyrinths. Proc Natl Acad Sci U S A. 2009;106:21472–7.

    Article  ADS  Google Scholar 

  12. Cohen J, Kim K, King P, Seibert M, Schulten K. Finding gas diffusion pathways in proteins: application to O-2 and H-2 transport in Cpl [FeFe]-hydrogenase and the role of packing defects. Structure. 2005;13:1321–9.

    Article  Google Scholar 

  13. Tomita A, Sato T, Ichiyanagi K, Nozawa S, Ichikawa H, Chollet M, Kawai F, Park SY, Tsuduki T, Yamato T, Koshihara S, Adachi S. Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin. Proc Natl Acad Sci U S A. 2009;106:2612–6.

    Article  ADS  Google Scholar 

  14. Arroyo-Manez P, Bikiel DE, Boechi L, Capece L, Di Lelia S, Estrin DA, Marti MA, Moreno DM, Nadra AD, Petruk AA. Protein dynamics and ligand migration interplay as studied by computer simulation. Biochimica Biophys Acta Protein Proteom. 2011;1814:1054–64.

    Google Scholar 

  15. Forti F, Boechi L, Estrin DA, Marti MA. Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins. J Comput Chem. 2011;32:2219–31.

    Article  Google Scholar 

  16. Cohen J, Arkhipov A, Braun R, Schulten K. Imaging the migration pathways for O-2, CO, NO, and Xe inside myoglobin. Biophys J. 2006;91:1844–57.

    Article  Google Scholar 

  17. Cohen J, Olsen KW, Schulten K. Finding gas migration pathways in proteins using implicit ligand sampling. Globins Nitric Oxide React Protein B. 2008;437:439–57.

    Article  Google Scholar 

  18. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;303:1831–8.

    Article  ADS  Google Scholar 

  19. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. Towards complete cofactor arrangement in the 3.0 angstrom resolution structure of photosystem II. Nature. 2005;438:1040–4.

    Article  ADS  Google Scholar 

  20. Murray JW, Barber J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol. 2007;159:228–37.

    Article  Google Scholar 

  21. Ho FM, Styring S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta Bioenerg. 2008;1777:140–53.

    Article  Google Scholar 

  22. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009;16:334–42.

    Article  Google Scholar 

  23. Gabdulkhakov A, Guskov A, Broser M, Kern J, Muh F, Saenger W, Zouni A. Probing the accessibility of the Mn4Ca cluster in photosystem II: channels calculation. Noble gas derivatization, and cocrystallization with DMSO. Structure. 2009;17:1223–34.

    Article  Google Scholar 

  24. Sproviero EM, McEvoy JP, Gascon JA, Brudvig GW, Batista VS. Computational insights into the O-2-evolving complex of photosystem II. Photosynth Res. 2008;97:91–114.

    Article  Google Scholar 

  25. Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS. Computational studies of the O-2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coord Chem Rev. 2008;252:395–415.

    Article  Google Scholar 

  26. Ho FM. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Photosynth Res. 2008;98:503–22.

    Article  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K. VMD - visual molecular dynamics. J Mol Graphics. 1996;14:33–8.

    Article  Google Scholar 

  28. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys. 1999;151:283–312.

    Article  MATH  ADS  Google Scholar 

  29. Kawakami K, Umena Y, Kamiya N, Shen JR. Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 angstrom resolution. J Photochem Photobiol B Biol. 2011;104:9–18.

    Article  Google Scholar 

  30. Hermans A, Xia X, Cavanaugh D. DOWSER. Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260. 1998. http://hekto.med.unc.edu/HERMANS/software/DOWSER/

  31. Zhang L, Hermans J. Hydrophilicity of cavities in proteins. Protein Struct Funct Genet. 1996;24:433–8.

    Article  Google Scholar 

  32. Vassiliev S, Comte P, Mahboob A, Bruce D. Tracking the flow of water through photosystem II using molecular dynamics and streamline tracing. Biochemistry. 2010;49:1873–81.

    Article  Google Scholar 

  33. Zhu FQ, Tajkhorshid E, Schulten K. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer. FEBS Lett. 2001;504:212–8.

    Article  Google Scholar 

  34. de Groot BL, Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001;294:2353–7.

    Article  ADS  Google Scholar 

  35. Chakrabarti N, Roux B, Pomes R. Structural determinants of proton blockage in aquaporins. J Mol Biol. 2004;343:493–510.

    Article  Google Scholar 

  36. de Groot BL, Frigato T, Helms V, Grubmuller H. The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol. 2003;333:279–93.

    Article  Google Scholar 

  37. Hu Z, Jiang J, Sandler SI. Water in hydrated orthorhombic lysozyme crystal: insight from atomistic simulations. J Chem Phys. 2008;129:075105.

    ADS  Google Scholar 

  38. Hu ZQ, Jiang JW. Molecular dynamics simulations for water and ions in protein crystals. Langmuir. 2008;24:4215–23.

    Article  Google Scholar 

  39. Lebihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Lavaljeantet M. Mr imaging of intravoxel incoherent motions - application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  Google Scholar 

  40. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.

    Article  Google Scholar 

  41. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imag. 2006;24:402–8.

    Article  Google Scholar 

  42. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed. 2002;15:456–67.

    Article  Google Scholar 

  43. Johansen-Berg H, Rushworth MFS. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci. 2009;32:75–94.

    Article  Google Scholar 

  44. Jensen MO, Park S, Tajkhorshid E, Schulten K. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci U S A. 2002;99:6731–6.

    Article  ADS  Google Scholar 

  45. Zhou HX, Wlodek ST, McCammon JA. Conformation gating as a mechanism for enzyme specificity. Proc Natl Acad Sci U S A. 1998;95:9280–3.

    Article  ADS  Google Scholar 

  46. Dau H, Haumann M. The manganese complex of photosystem II in its reaction cycle - basic framework and possible realization at the atomic level. Coord Chem Rev. 2008;252:273–95.

    Article  Google Scholar 

  47. Vassiliev S, Zaraiskaya T, Bruce D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim Biophys Acta Bioenerg. 2013;1817:1671–8.

    Article  Google Scholar 

  48. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys. 2003;119:3559–66.

    ADS  Google Scholar 

  49. Jarzynski C. Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E. 1997;56:5018–35.

    Article  ADS  Google Scholar 

  50. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature. 2011;473:55–U65.

    Article  ADS  Google Scholar 

  51. Zeidel ML, Ambudkar SV, Smith BL, Agre P. Reconstitution of functional water channels in liposomes containing purified red-cell Chip28 protein. Biochemistry. 1992;31:7436–40.

    Article  Google Scholar 

  52. Vanhoek AN, Verkman AS. Functional reconstitution of the isolated erythrocyte water channel Chip28. J Biol Chem. 1992;267:18267–9.

    Google Scholar 

  53. Hub JS, de Groot BL. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A. 2008;105:1198–203.

    Article  ADS  Google Scholar 

  54. Ishikita H, Saenger W, Loll B, Biesiadka J, Knapp EW. Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry. 2006;45:2063–71.

    Article  Google Scholar 

  55. Calhoun DB, Vanderkooi JM, Woodrow GV, Englander SW. Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry. 1983;22:1526–32.

    Article  Google Scholar 

  56. Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol. 2007;157:534–44.

    Article  Google Scholar 

  57. Johnson BJ, Cohen J, Welford RW, Pearson AR, Schulten K, Klinman JP, Wilmot CM. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J Biol Chem. 2007;282:17767–76.

    Article  Google Scholar 

  58. Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris F, van Berkel WJH, Chaiyen P, Fraaije MW, Mattevi A, McCammon JA. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proc Natl Acad Sci U S A. 2009;106:10603–8.

    Article  ADS  Google Scholar 

  59. Luna VM, Fee JA, Deniz AA, Stout CD. Mobility of Xe atoms within the oxygen diffusion channel of cytochrome ba(3) oxidase. Biochemistry. 2012;51:4669–76.

    Article  Google Scholar 

  60. Roy A, Carpentier P, Bourgeois D, Field M. Diffusion pathways of oxygen species in the phototoxic fluorescent protein KillerRed. Photochem Photobiol Sci. 2010;9:1342–50.

    Google Scholar 

  61. Chapagain PP, Regmi CK, Castillo W. Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. J Chem Phys. 2011;135.

    Google Scholar 

  62. Saam J, Rosini E, Molla G, Schulten K, Pollegioni L, Ghisla S. O-2 reactivity of flavoproteins dynamic access of dioxygen to the active site and role of a H + relay system in D-amino acid oxidase. J Biol Chem. 2010;285:24439–46.

    Article  Google Scholar 

  63. Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci U S A. 2007;104:13319–24.

    Article  ADS  Google Scholar 

  64. Tilton RF, Kuntz ID, Petsko GA. Cavities in proteins - structure of a metmyoglobin-xenon complex solved to 1.9-A. Biochemistry. 1984;23:2849–57.

    Article  Google Scholar 

  65. Ho FM. Structural and mechanistic investigations of photosystem II through computational methods. Biochim Biophys Acta. 2012;1817:106–20.

    Article  Google Scholar 

  66. Ho FM. Wydrzynski T, Hillier W, editors. Substrate and Product Channels in Photosystem II. Molecular solar fuels, Cambridge: Royal Society of Chemistry; 2012, pp. 208–248.

    Google Scholar 

  67. Zaraiskaya T, Vassiliev S, Bruce D. Revealing molecular oxygen migration pathways in photosystem II using implicit ligand sampling and wavefront propagation. J Comput Sci 2014;5: 549–55.

    Google Scholar 

  68. Garrido S, Moreno L, Blanko D, Munoz ML. Sensor-based global planning for mobile robot navigation. Robotica. 2007;25:189–99.

    Article  Google Scholar 

  69. Cohen LD, Deschamps T. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Comput Meth Biomech Biomed Eng. 2007;10:289–305.

    Article  Google Scholar 

  70. De Ridder S, Dellinger J. Ambient seismic noise eikonal tomography for near-surface imaging at Valhall. Lead Edge. 2011;30:506–12.

    Article  Google Scholar 

  71. Alvino C, Unal G, Slabaugh G, Peny B, Fang T. Efficient segmentation based on Eikonal and diffusion equations. Int J Comput Math. 2007;84:1309–24.

    Article  MATH  MathSciNet  Google Scholar 

  72. Podvin P, Lecomte I. Finite-difference computation of traveltimes in very contrasted velocity models - a massively parallel approach and its associated tools. Geophys J Int. 1991;105:271–84.

    Article  ADS  Google Scholar 

  73. Shir OM, Emmerich M, Back T. Adaptive niche radii and niche shapes approaches for niching with the CMA-ES. Evol Comput. 2010;18:97–126.

    Article  Google Scholar 

  74. Bosma M, Smit J, Terwisscha J, van Scheltinga J. Super resolution volume rendering hardware. Tenth Workshop on graphics hardware. EuroGraphics Technical Report Series EG95 HW. 1995.

    Google Scholar 

  75. Hansen N, Agbor FAB, Keil FJ. New force fields for nitrous oxide and oxygen and their application to phase equilibria simulations. Fluid Phase Equilib. 2007;259:180–8.

    Article  Google Scholar 

  76. Winter MB, Herzik MA, Kuriyan J, Marletta MA. Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proc Natl Acad Sci U S A. 2011;108:E881–9.

    Article  ADS  Google Scholar 

  77. Zhang YB, Lu M, Cheng YK, Li ZQ. H-NOX domains display different tunnel systems for ligand migration. J Mol Graph Model. 2010;28:814–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Vassiliev Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vassiliev, S., Bruce, D. (2014). Water and Oxygen Diffusion Pathways Within Photosystem II. Computational Studies of Controlled Substrate Access and Product Release. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_12

Download citation

Publish with us

Policies and ethics