Skip to main content

Chaperones of the Endoplasmic Reticulum Associated Degradation (ERAD) Pathway

  • Chapter
  • First Online:
  • 1437 Accesses

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

Abstract

The endoplasmic reticulum (ER) is a diverse organelle with multiple specialized functions including the folding and assembly of secretory proteins. The ER harbors a number of chaperones, foldases, and covalent modifiers that aid in these processes. Due to the high protein throughput of the ER, inevitably some of the secreted proteins fail to reach their native state and therefore must be degraded. In a process known as ER-associated degradation (ERAD), misfolded proteins are recognized, translocated out of the ER into the cytoplasm, ubiquitinated, extracted from the ER membrane, deubiquitinated, and finally degraded by the 26S proteasome to prevent toxic build-up of non-native proteins. To account for the different properties and topologies of misfolded secretory cargo, a number of ER protein complexes are employed for the distinct steps of ERAD. Some of these complexes are shared between yeast and metazoan, while other appear unique to metazoa, reflecting their increased secretory load.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tamura T, Sunryd JC, Hebert DN (2010) Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 27(8):412–427

    Article  CAS  PubMed  Google Scholar 

  2. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  3. Hebert DN, Molinari M (2012) Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem Sci 37(10):404–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bukau B, Horwich AL (1998) The hsp70 and hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  5. Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71(5):289–297

    PubMed  Google Scholar 

  6. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  7. Mimura N, Yuasa S, Soma M, Jin H, Kimura K, Goto S, Koseki H, Aoe T (2008) Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol Cell Biol 28(1):293–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci U S A 92(5):1764–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388(6645):891–895

    Article  CAS  PubMed  Google Scholar 

  10. Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274(6):3453–3460

    Article  CAS  PubMed  Google Scholar 

  11. Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153(5):1061–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126(2):349–359

    Article  CAS  PubMed  Google Scholar 

  13. Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K (2008) Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1 Lubiquitin ligase complex and BiP. J Biol Chem 283(30):20914–20924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321(5888):569–572

    Article  CAS  PubMed  Google Scholar 

  15. Hagiwara M, Maegawa K, Suzuki M, Ushioda R, Araki K, Matsumoto Y, Hoseki J, Nagata K, Inaba K (2011) Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 41(4):432–444

    Article  CAS  PubMed  Google Scholar 

  16. Lai CW, Otero JH, Hendershot LM, Snapp E (2012) ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery. J Biol Chem 287(11):7969–7978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Feige MJ, Hendershot LM (2013) Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell 51(3):297–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Otero JH, Lizak B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21(5):472–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1 Lubiquitin ligase complex for ERAD. Nat Cell Biol 10(3):272–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Oka OB, Bulleid NJ (2013) Forming disulfides in the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2425–2429

    Article  CAS  PubMed  Google Scholar 

  21. Cai H, Wang CC, Tsou CL (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269(40):24550–24552

    CAS  PubMed  Google Scholar 

  22. Gillece P, Luz JM, Lennarz WJ, de La CFJ, Romisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147(7):1443–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Grubb S, Guo L, Fisher EA, Brodsky JL (2012) Protein disulfide isomerases contribute differentially to the endoplasmic reticulum-associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 23(4):520–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158:247–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lee SO, Cho K, Cho S, Kim I, Oh C, Ahn K (2010) Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. EMBO J 29(2):363–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Walczak CP, Bernardi KM, Tsai B (2012) Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry. Antioxid Redox Signal 16(8):809–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Moore P, Bernardi KM, Tsai B (2010) The Ero1alpha-PDI redox cycle regulates retro-translocation of cholera toxin. Mol Biol Cell 21(7):1305–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383(Pt 2):285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Riemer J, Appenzeller-Herzog C, Johansson L, Bodenmiller B, Hartmann-Petersen R, Ellgaard L (2009) A luminal flavoprotein in endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A 106(35):14831–14836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Riemer J, Hansen HG, Appenzeller-Herzog C, Johansson L, Ellgaard L (2011) Identification of the PDI-family member ERp90 as an interaction partner of ERFAD. PloS ONE 6(2):e17037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Deprez P, Gautschi M, Helenius A (2005) More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell 19(2):183–195

    Article  CAS  PubMed  Google Scholar 

  32. Chen W, Helenius J, Braakman I, Helenius A (1995) Cotranslational folding and calnexin binding of influenza hemagglutinin in the endoplasmic reticulum. Proc Natl Acad Sci U S A 92:6229–6233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharides, glucose trimming and calnexin during glycoprotein folding in the endoplasmic reticulum. Proc Natl Acad Sci USA 91:913–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81(3):425–433

    Article  CAS  PubMed  Google Scholar 

  36. Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283(16):10221–10225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Caramelo JJ, Castro OA, Alonso LG, de Prat-Gay G, Parodi AJ (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Aca Sci U S A 100(1):86–91

    Article  CAS  Google Scholar 

  38. Sousa M, Parodi AJ (1995) The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc: glycoprotein glucosyltransferase. EMBO J 14(17):4196–4203

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Keith N, Parodi AJ, Caramelo JJ (2005) Glycoprotein tertiary and quaternary structures are monitored by the same quality control mechanism. J Biol Chem 280(18):18138–18141

    Article  CAS  PubMed  Google Scholar 

  40. Hebert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 15(12):2961–2968

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jackson MR, Cohendoyle MF, Peterson PA, Williams DP (1994) Regulation of MHC Class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263:384–387

    Article  CAS  PubMed  Google Scholar 

  42. Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 99(4):1954–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273(11):6009–6012

    Article  CAS  PubMed  Google Scholar 

  44. Kozlov G, Bastos-Aristizabal S, Maattanen P, Rosenauer A, Zheng F, Killikelly A, Trempe JF, Thomas DY, Gehring K (2010) Structural basis of cyclophilin B binding by the calnexin/calreticulin P-domain. J Biol Chem 285(46):35551–35557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pearse BR, Hebert DN (2010) Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. Biochim Biophys Acta 1803(6):684–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, Choudhury P, Cabral CM, Sifers RN (1997) Intracellular disposal of incompletely folded human alpha1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 272(12):7946–7951

    Article  CAS  PubMed  Google Scholar 

  47. Kostova Z, Wolf DH (2005) Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J Cell Science 118(Pt 7):1485–1492

    Article  CAS  PubMed  Google Scholar 

  48. McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence of cytosol, calnexin and ATP. J Cell Biol 132(3):291–298

    Article  CAS  PubMed  Google Scholar 

  49. Qu DF, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, a1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795

    Article  CAS  PubMed  Google Scholar 

  50. Sousa MC, Ferrero-Garcia MA, Parodi AJ (1992) Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. BioChemistry 31:97–105

    Article  CAS  PubMed  Google Scholar 

  51. Schallus T, Feher K, Sternberg U, Rybin V, Muhle-Goll C (2010) Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 20(8):1010–1020

    Article  CAS  PubMed  Google Scholar 

  52. Schallus T, Jaeckh C, Feher K, Palma AS, Liu Y, Simpson JC, Mackeen M, Stier G, Gibson TJ, Feizi T, Pieler T, Muhle-Goll C (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19(8):3404–3414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chen Y, Hu D, Yabe R, Tateno H, Qin SY, Matsumoto N, Hirabayashi J, Yamamoto K (2011) Role of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of alpha1-antitrypsin. Mol Biol Cell 22(19):3559–3570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Galli C, Bernasconi R, Solda T, Calanca V, Molinari M (2011) Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PloS ONE 6(1):e16304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Qin SY, Hu D, Matsumoto K, Takeda K, Matsumoto N, Yamaguchi Y, Yamamoto K (2012) Malectin forms a complex with ribophorin I for enhanced association with misfolded glycoproteins. J Biol Chem 287(45):38080–38089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Su K, Stoller T, Rocco J, Zemsky J, Green R (1993) Pre-Golgi degradation of yeast prepro-a-factor in a mammalian cell. J Biol Chem 268:14301–14309

    CAS  PubMed  Google Scholar 

  57. Lederkremer GZ, Glickman MH (2005) A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem Sci 30(6):297–303

    Article  CAS  PubMed  Google Scholar 

  58. Molinari M (2007) N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol 3 (6):313–320

    Article  CAS  PubMed  Google Scholar 

  59. Ermonval M, Kitzmuller C, Mir AM, Cacan R, Ivessa NE (2001) N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 11(7):565–576

    Article  CAS  PubMed  Google Scholar 

  60. Frenkel Z, Gregory W, Kornfeld S, Lederkremer GZ (2003) Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6–5GlcNAc2. J Biol Chem 278:34119–33424.

    Article  CAS  PubMed  Google Scholar 

  61. Burke J, Lipari F, Igdoura S, Herscovics A (1996) The Saccharomyces cerevisiae processing alpha 1,2-mannosidase is localized in the endoplasmic reticulum, independently of known retrieval motifs. Eur J Cell Biol 70(4):298–305

    CAS  PubMed  Google Scholar 

  62. Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ (2008) Endoplasmic reticulum (ER) mannosidase I Is compartmentalized and required for N-glycan trimming to Man5 6GlcNAc2 in glycoprotein ER-associated degradation. Mol Biol Cell 19(1):216–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tremblay LO, Herscovics A (1999) Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology 9(10):1073–1078

    Article  CAS  PubMed  Google Scholar 

  64. Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN (2011) Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22(16):2810–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Esmon B, Esmon P C, Scheckman R (1984) Early steps in processing of yeast glycoproteins. J Biol Chem 259:10322–10327

    CAS  PubMed  Google Scholar 

  66. Liebminger E, Huttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert GJ, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21(12):3850–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 155(3):355–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2(5):423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Gnann A, Riordan JR, Wolf DH (2004) Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol Biol Cell 15(9):4125–4135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184(1):159–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M (2011) A complex of pdi1p and the mannosidase htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42(6):782–793

    Article  CAS  PubMed  Google Scholar 

  72. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2(5):415–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16(5):592–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, Moremen KW (2005) Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280(16):16197–16207

    Article  CAS  PubMed  Google Scholar 

  75. Mast SW, Moremen KW (2006) Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 415:31–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299(5611):1397–1400

    Article  CAS  PubMed  Google Scholar 

  77. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299(5611):1394–1397

    Article  CAS  PubMed  Google Scholar 

  78. Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294

    Article  CAS  PubMed  Google Scholar 

  79. Olivari S, Cali T, Salo KE, Paganetti P, Ruddock LW, Molinari M (2006) EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem Biophys Res Commun 349(4):1278–1284

    Article  CAS  PubMed  Google Scholar 

  80. Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010) EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 20(5):567–575

    Article  CAS  PubMed  Google Scholar 

  81. Termine DJ, Moremen KW, Sifers RN (2009) The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J Cell Sci 122(Pt 7):976–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1 Lcontaining ERAD complex. Mol Cell 34(5):627–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172(3):383–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ron E, Shenkman M, Groisman B, Izenshtein Y, Leitman J, Lederkremer GZ (2011) Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Mol Biol Cell 22(21):3945–3954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Shenkman M, Groisman B, Ron E, Avezov E, Hendershot LM, Lederkremer GZ (2013) A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins. J Biol Chem 288(4):2167–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MP, Gustafsson JA, Sitia R, Spyrou G (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J Biol Chem 278(2):1059–1066

    Article  CAS  PubMed  Google Scholar 

  87. Marin MB, Ghenea S, Spiridon LN, Chiritoiu GN, Petrescu AJ, Petrescu SM (2012) Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PloS ONE 7(8):e42998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280(4):2424–2428

    Article  CAS  PubMed  Google Scholar 

  89. Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, Nagata K, Hosokawa N (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 281(14):9650–9658

    Article  CAS  PubMed  Google Scholar 

  90. Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15(4):421–436

    Article  CAS  PubMed  Google Scholar 

  91. Olivari S, Molinari M (2007) Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Lett 581(19):3658–3664

    Article  CAS  PubMed  Google Scholar 

  92. Saeed M, Suzuki R, Watanabe N, Masaki T, Tomonaga M, Muhammad A, Kato T, Matsuura Y, Watanabe H, Wakita T, Suzuki T (2011) Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J Biol Chem 286(43):37264–37273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19(5):515–523

    Article  CAS  PubMed  Google Scholar 

  94. Hebert DN, Bernasconi R, Molinari M (2010) ERAD substrates: which way out? Semin Cell Dev Biol 21(5):526–532

    Article  CAS  PubMed  Google Scholar 

  95. Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein ERAD, recognizes mannose-trimmed N-glycans. J Biol Chem 284(25):17061–17068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Cruciat CM, Hassler C, Niehrs C (2006) The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J Biol Chem 281(18):12986–12993

    Article  CAS  PubMed  Google Scholar 

  97. Groisman B, Shenkman M, Ron E, Lederkremer GZ (2011) Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps. J Biol Chem 286(2):1292–1300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Yamaguchi D, Hu D, Matsumoto N, Yamamoto K (2010) Human XTP3-B binds to alpha1-antitrypsin variant null(Hong Kong) via the C-terminal MRH domain in a glycan-dependent manner. Glycobiology 20(3):348–355

    Article  CAS  PubMed  Google Scholar 

  99. Fujimori T, Kamiya Y, Nagata K, Kato K, Hosokawa N (2013) Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded alpha1-antitrypsin variant. FEBS J 280(6):1563–1575

    Article  CAS  PubMed  Google Scholar 

  100. Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32(6):870–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19(6):765–775

    Article  CAS  PubMed  Google Scholar 

  102. Jaenicke LA, Brendebach H, Selbach M, Hirsch C (2011) Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum. Mol Biol Cell 22(16):2937–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Bernasconi R, Pertel T, Luban J, Molinari M (2008) A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum: inhibiting secretion of misfolded protein conformers and enhancing their disposal. J Biol Chem 283(24):16446–16454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL (2008) SEL1 Lnucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A 105(34):12325–12330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Kanehara K, Xie W, Ng DT (2010) Modularity of the Hrd1 ERAD complex underlies its diverse client range. J Cell Biol 188(5):707–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Hosokawa N, Kamiya Y, Kato K (2010) The role of MRH domain-containing lectins in ERAD. Glycobiology 20(6):651–660

    Article  CAS  PubMed  Google Scholar 

  107. Yoshida Y, Tanaka K (2010) Lectin-like ERAD players in ER and cytosol. Biochim Biophys Acta 1800(2):172–180

    Article  CAS  PubMed  Google Scholar 

  108. Hampton RY, Gardner RG, Rine J (1996) Role of 26 S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7(12):2029–2044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Mueller B, Lilley BN, Ploegh HL (2006) SEL1 L the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175(2):261–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126(2):361–373

    Article  CAS  PubMed  Google Scholar 

  111. Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seelig L, Kim C, Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 151(1):69–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Plemper RK, Bordallo J, Deak PM, Taxis C, Hitt R, Wolf DH (1999) Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J Cell Sci 112(Pt 22):4123–4134

    CAS  PubMed  Google Scholar 

  113. Francisco AB, Singh R, Li S, Vani AK, Yang L, Munroe RJ, Diaferia G, Cardano M, Biunno I, Qi L, Schimenti JC, Long Q (2010) Deficiency of suppressor enhancer Lin12 1 like (SEL1 L in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem 285(18):13694–13703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28(12):655–662

    Article  PubMed  CAS  Google Scholar 

  115. Ninagawa S, Okada T, Takeda S, Mori K (2011) SEL1 Lis required for endoplasmic reticulum-associated degradation of misfolded luminal proteins but not transmembrane proteins in chicken DT40 cell line. Cell Struct Funct 36(2):187–195

    Article  CAS  PubMed  Google Scholar 

  116. Iida Y, Fujimori T, Okawa K, Nagata K, Wada I, Hosokawa N (2011) SEL1 Lprotein critically determines the stability of the HRD1-SEL1 Lendoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J Biol Chem 286(19):16929–16939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Bernasconi R, Galli C, Noack J, Bianchi S, de Haan CAM, Reggiori F, Molinari M (2012) Role of the SEL1 LLC3-I complex as an ERAD tuning receptor in the mammalian ER. Mol Cell 46(6):809–819

    Article  CAS  PubMed  Google Scholar 

  118. Plemper RK, Deak PM, Otto RT, Wolf DH (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett 443(3):241–245

    Article  CAS  PubMed  Google Scholar 

  119. Stanley AM, Carvalho P, Rapoport T (2011) Recognition of an ERAD-L substrate analyzed by site-specific in vivo photocrosslinking. FEBS Lett 585(9):1281–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  CAS  PubMed  Google Scholar 

  121. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840

    Article  CAS  PubMed  Google Scholar 

  122. Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448(7152):435–438

    Article  CAS  PubMed  Google Scholar 

  123. Horn SC, Hanna J, Hirsch C, Volkwein C, Schutz A, Heinemann U, Sommer T, Jarosch E (2009) Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol Cell 36(5):782–793

    Article  CAS  PubMed  Google Scholar 

  124. Wahlman J, DeMartino GN, Skach WR, Bulleid NJ, Brodsky JL, Johnson AE (2007) Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129(5):943–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Garza RM, Sato BK, Hampton RY (2009) In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J Biol Chem 284(22):14710–14722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y, Anderson RG, DeBose-Boyd RA (2010) Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem 285(25):19288–19298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Olzmann JA, Kopito RR (2011) Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 286(32):27872–27874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Greenblatt EJ, Olzmann JA, Kopito RR (2011) Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18(10):1147–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11(12):885–890

    Article  CAS  PubMed  Google Scholar 

  130. Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15(4):753–763

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Eura Y, Yanamoto H, Arai Y, Okuda T, Miyata T, Kokame K (2012) Derlin-1 deficiency is embryonic lethal, Derlin-3 deficiency appears normal, and Herp deficiency is intolerant to glucose load and ischemia in mice. PloS ONE 7(3):e34298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Dougan SK, Hu CC, Paquet ME, Greenblatt MB, Kim J, Lilley BN, Watson N, Ploegh HL (2011) Derlin-2-deficient mice reveal an essential role for protein dislocation in chondrocytes. Mol Cell Biol 31(6):1145–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2012) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14(1):93–105

    Article  CAS  Google Scholar 

  134. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  135. Neutzner A, Neutzner M, Benischke AS, Ryu SW, Frank S, Youle RJ, Karbowski M (2011) A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J Biol Chem 286(10):8633–8643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Claessen JH, Kundrat L, Ploegh HL (2012) Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 22(1):22–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P (2013) Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2:e00953

    Article  PubMed Central  PubMed  Google Scholar 

  138. Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19(4):1328–1336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Shen Y, Ballar P, Fang S (2006) Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. Biochem Biophys Res Commun 349(4):1285–1293

    Article  CAS  PubMed  Google Scholar 

  140. Liang J, Yin C, Doong H, Fang S, Peterhoff C, Nixon RA, Monteiro MJ (2006) Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated protein degradation. Journal Cell Sci 119(Pt 19):4011–4024

    Article  CAS  Google Scholar 

  141. Lu JP, Wang Y, Sliter DA, Pearce MM, Wojcikiewicz RJ (2011) RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J Biol Chem 286(27):24426–24433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Wang Y, Pearce MM, Sliter DA, Olzmann JA, Christianson JC, Kopito RR, Boeckmann S, Gagen C, Leichner GS, Roitelman J, Wojcikiewicz RJ (2009) SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. Biochim Biophys Acta 1793(11):1710–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Ravid T, Kreft SG, Hochstrasser M (2006) Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25(3):533–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Kreft SG, Wang L, Hochstrasser M (2006) Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J Biol Chem 281(8):4646–4653

    Article  CAS  PubMed  Google Scholar 

  145. Younger JM, Chen L, Ren HY, Rosser MF, Turnbull EL, Fan CY, Patterson C, Cyr DM (2006) Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126(3):571–582

    Article  CAS  PubMed  Google Scholar 

  146. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–442

    Article  CAS  PubMed  Google Scholar 

  147. Stolz A, Besser S, Hottmann H, Wolf DH (2013) Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation. Proc Natl Acad Sci U S A 110(38):15271–15276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28(4):359–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Burr ML, van den Boomen DJ, Bye H, Antrobus R, Wiertz EJ, Lehner PJ (2013) MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation. Proc Natl Acad Sci U S A 110(35):14290–14295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Ishikura S, Weissman AM, Bonifacino JS (2010) Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem 285(31):23916–23924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Shimizu Y, Okuda-Shimizu Y, Hendershot LM (2010) Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell 40(6):917–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Wolf DH, Stolz A (2012) The Cdc48 machine in endoplasmic reticulum associated protein degradation. Biochim Biophys Acta 1823(1):117–124

    Article  CAS  PubMed  Google Scholar 

  154. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162(1):71–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Braun S, Matuschewski K, Rape M, Thomas S, Jentsch S (2002) Role of the ubiquitin-selective CDC48 (UFD1/NPL4) chaperone segregase in ERAD of OLE1 and other substrates. EMBO J 21:615–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Christensen LC, Jensen NW, Vala A, Kamarauskaite J, Johansson L, Winther JR, Hofmann K, Teilum K, Ellgaard L (2012) The human selenoprotein VCP-interacting membrane protein (VIMP) is non-globular and harbors a reductase function in an intrinsically disordered region. J Biol Chem 287(31):26388–26399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Blom D, Hirsch C, Stern P, Tortorella D, Ploegh HL (2004) A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 23(3):650–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Ernst R, Mueller B, Ploegh HL, Schlieker C (2009) The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell 36(1):28–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Wang Q, Li L, Ye Y (2006) Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol 174(7):963–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Nery FC, Armata IA, Farley JE, Cho JA, Yaqub U, Chen P, da Hora CC, Wang Q, Tagaya M, Klein C, Tannous B, Caldwell KA, Caldwell GA, Lencer WI, Ye Y, Breakefield XO (2011) TorsinA participates in endoplasmic reticulum-associated degradation. Nat Commun 2:393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  161. Zhang ZR, Bonifacino JS, Hegde RS (2013) Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 154(3):609–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42(6):758–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12(5):1303–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL (2008) Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132(1):101–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Tamura T, Cormier JH, Hebert DN (2011) Characterization of early EDEM1 protein maturation events and their functional implications. J Biol Chem 286(28):24906–24915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Hebert PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sunryd, J., Tannous, A., Lamriben, L., Hebert, D. (2014). Chaperones of the Endoplasmic Reticulum Associated Degradation (ERAD) Pathway. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_11

Download citation

Publish with us

Policies and ethics