Skip to main content

Epidemiological Diffusion and Discrete Branching Models for Malware Propagation in Computer Networks

  • Chapter
  • First Online:
Mathematics Without Boundaries
  • 1031 Accesses

Abstract

This paper focuses on the study of epidemiological diffusion and discrete branching models for malware propagation in computer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). (The American Physical Society)

    Google Scholar 

  2. Aldous, D.J., Popovic, L.: A critical branching process model for biodiversity. Adv. Appl. Prob. 37(4), 1094–1115 (2004)

    Article  MathSciNet  Google Scholar 

  3. Asmussen, S., Hering, H.: Branching Processes. Birkhäuser, Boston (1983)

    Book  MATH  Google Scholar 

  4. Athreya, K.B.: Change of measures for Markov chains and the Llog L theorem for branching processes. Bernoulli 6, 323–338 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972)

    Book  MATH  Google Scholar 

  6. Axelrod, D.E., Kimmel, M.: Branching Processes in Biology. Springer, New York (2002)

    MATH  Google Scholar 

  7. Baddeley, A., Barany, I., Schneider, R., Weil, W.: Stochastic geometry. In: Weil, W. (ed.) Lecture Notes in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  8. Bailey, N.T.J.: The mathematical Theory of Infectious Diseases. Oxford University Press, New York (1975)

    MATH  Google Scholar 

  9. Barabàsi, A.-L., Bonabeau, E.: Scale-free Networks. Sci. Am. 288, 60–69 (2003)

    Google Scholar 

  10. Bennies, J., Kersting, G.: A random walk approach to Galton-Watson trees. J. Theor. Probab. 13, 777–803 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  12. Bettstetter, C.: On the connectivity of ad hoc networks. Comput. J. Oxf. J. 47(4), 432–447 (2004). (Oxford University Press)

    Google Scholar 

  13. Bettstetter, C., Hartmann, C.: Connectivity of wireless multihop networks in a shadow fading environment. Wirel. Netw. 11(5), 571–579 (2005). (ACM/Springer)

    Google Scholar 

  14. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)

    Google Scholar 

  15. Bollobas, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  16. Chen, Z., Gao, L., Kwiat, K.: Modeling the spread of active worms. In: Proceedings of the 22nd IEEE Conference on Computer Communications (INFOCOM), vol. 3, pp. 1890–1900 (2003)

    Google Scholar 

  17. Cole, R.G., Phamdo, N., Rajab, M.A., Terzis, A.: Requirements on worm mitigation technologies in MANETS. In: Proceedings of Workshop on Principles of Advanced and Distributed Simulation (PADS), pp. 207–214 (2005)

    Google Scholar 

  18. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  19. Duquesne, T., Le Gall, J.F.: Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque 281, p. 145 (2002)

    Google Scholar 

  20. Dwass, M.: A theorem about infinitely divisible distributions. Z. Wahrscheinlichkeitstheorie und Verw Gebiete 9, 287–289 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dwass, M.: The total progeny in a branching process and a related random walk. J. Appl. Probability 6, 682–686 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, S.N.: Probability and real trees. In: Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 6–23 July 2005. Lecture Notes in Mathematics 1920. Springer, Berlin (2008)

    Google Scholar 

  23. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  24. Fuh, C.-D.: SPRT and CUSUM in hidden Markov models. Ann. Stat. 31(3), 942–977 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ganesh, A., Massoulie, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: Proceedings of 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 2, pp. 1455–1466 (2005)

    Google Scholar 

  26. Garetto, M., Gong, W., Towsley, D.: Modeling malware spreading dynamics. In: Proceedings of 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, pp. 1869–1879 (2003)

    Google Scholar 

  27. Geiger, J.: Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Prob. 36, 301–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Geiger, J., Kersting, G.: Depth–first search of random trees, and Poisson point processes. In: Classical and Modern Branching Processes (Minneapolis, 1994). IMA Mathematics and Its Applications, vol. 84. Springer, New York (1997)

    Google Scholar 

  29. Grewal, M.S., Andrews, A.P.: Kalman Filtering Theory and Practice. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  30. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford University Press, New York (2001)

    Google Scholar 

  31. Haccou, P., Jagers, P., Vatutin, V.A.: Branching processes: variation, growth, and extinction of populations. In: Cambridge Studies in Adaptive Dynamics, vol. 5. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  32. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  33. Heathcote, C.R.: Corrections and comments on the paper “A branching process allowing immigration”. J. Roy. Stat. Soc. Ser. B 28, 213–217 (1966)

    MathSciNet  Google Scholar 

  34. Heathcote, C.R., Seneta, E., Vere-Jones, D.: A refinement of two theorems in the theory of branching processes. Teor. Verojatnost. i Primenen. 12, 341–346 (1967)

    MathSciNet  MATH  Google Scholar 

  35. Heyde, C.C.: Extension of a result of Seneta for the super–critical Galton–Watson process. Ann. Math. Stat. 41, 739–742 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Heyde, C.C., Seneta, E.: The simple branching process, a turning point test and a fundamental inequality: a historical note on I.J. Bienaymé. Biometrika 59, 680–683 (1972)

    MathSciNet  MATH  Google Scholar 

  37. Jagers, P.: Branching Processes with Biological Applications. Wiley, London/New York/Sydney (1975)

    MATH  Google Scholar 

  38. Joffe, A.: On the Galton–Watson branching processes with mean less than one. Ann. Math. Stat. 38, 264–266 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karyotis, V., Papavassiliou, S.: Risk-Based Attack Strategies for Mobile Ad Hoc Networks under Probabilistic Attack Modeling Framework. Comput. Netw. J. 51(9), 2397–2410 (2007).

    Article  MATH  Google Scholar 

  40. Karyotis, V., Kakalis, A., Papavassiliou, S.: Malware-propagative mobile ad hoc networks: asymptotic behavior analysis. J. Comput. Sci. Technol. 23(3), 389–399 (2008)

    Article  Google Scholar 

  41. Karyotis, V., Kakalis, A., Papavassiliou, S.: On the tradeoff between MAC-layer and network-layer topology-controlled malware spreading schemes in Ad Hoc and Sensor Networks. In: Proceedings of 3rd International Conference on Emerging Security Information, Systems and Technologies (SECURWARE) (2009)

    Google Scholar 

  42. Kemperman, J.H.B.: The Passage Problem for a Stationary Markov Chain. Statistical Research Monographs. University of Chicago Press, Chicago (1961)

    Google Scholar 

  43. Kephart, J., White, S., Center, I., Heights, Y.: Directed-graph epidemiological models of computer viruses. In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy (RISP), pp. 343–359(1991)

    Google Scholar 

  44. Kephart, J., White, S., Chess, D., Center, I., Hawthorne, N.: Computers and epidemiology. IEEE Spectr. Mag. 30(5), 20–26 (1993)

    Google Scholar 

  45. Kesidis, G., Hamadeh, I., Jiwasurat, S.: Coupled Kermack-McKendrick models for randomly scanning and bandwidth saturating internet worms. In: Proceedings of 3rd International Workshop on QoS in Multiservice IP Networks (QoSIP), pp. 101–109 (2005)

    Google Scholar 

  46. Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton–Watson Processes. Ann. Math. Stat. 37(21), part 3, 1211–1223 (1966)

    Google Scholar 

  47. Kesten, H., Ney, P., Spitzer, F.: The Galton–Watson process with mean one and finite variance. Teor. Verojatnost. i Primenen. 11, 579–611 (1966)

    MathSciNet  MATH  Google Scholar 

  48. Kingman, J.F.C.: The coalescent. Stoch. Process Appl. 13(3), 235–248 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kolmogorov, A.N.: Zur Lösung einer biologischen Aufgabe. Comm. Math. Mech. Chebyshev Univ. Tomsk 2, 1–6 (1938)

    Google Scholar 

  50. Lambert, A.: Population dynamics and random genealogies. Stoch. Models 24, 45–163 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lambert, A.: The contour of splitting trees is a Lévy process, Ann. Probab. 38, 348–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lambert, A.: Some aspects of discrete branching processes. Université Paris 6 Pierre et Marie Curie, France (2010). http://www.cmi.univ-mrs.fr/~pardoux/Ecole_CIMPA/CoursALambert.pdf

  53. Le Boudec, J.-Y., Vojnovic, M.: Perfect simulation and stationarity of a class of mobility models. In: Proceedings of 24th IEEE Conference on Computer Communications (INFOCOM), vol. 4, pp. 2743–2754 (2005)

    Google Scholar 

  54. Le Gall, J.F.: Random trees and applications. Probab. Surv. 2, 245–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Le Gall, J.F., Le Jan, Y.: Branching processes in Lévy processes: the exploration process. Ann. Probab. 26, 213–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liljeros, F., Edling, C.R., Amaral, L.A.N.: Sexual networks: implications for the transmission of sexually transmitted infections. Microbes Infect. 5, 189–196 (2003)

    Article  Google Scholar 

  57. Lyons, R., Peres, Y.: Probability on trees and networks, Version of 17 July 2010. Current version available at http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

  58. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of Llog L criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Nekovee, M.: Worm epidemics in wireless ad hoc networks. New J. Phys. 9, 189–200 (2007)

    Article  Google Scholar 

  60. Newman, M.E.J.: The structure and function of complex networks. Soc. Ind. Appl. Math. Rev. 45(2), 167–256 (2003)

    MATH  Google Scholar 

  61. Omic, J.S., Kooij, R.E., Van Mieghem, P.: Virus spread in complete bipartite graphs. In: Proceedings of 2nd Conference on Bio-Inspired Models of Network, Information and Computing Systems (BIONETICS), pp. 49–56 (2007)

    Google Scholar 

  62. Pastor-Satorras, R., Vespignani, A.: Epidemics and immunization in scale-free networks. In: Bornholdt, S., Schuster, H. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 113–132. Wiley-VCH, Berlin (2002)

    Google Scholar 

  63. Penrose, M.: Random Geometric Graphs. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  64. Pitman, J.: Combinatorial stochastic processes. In: Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, 7–24 July 2002. Lecture Notes in Mathematics 1875. Springer, Berlin (2006)

    Google Scholar 

  65. Popovic, L.: Asymptotic genealogy of a critical branching process. Ann. Appl. Probab. 14(4), 2120–2148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rannala, B.: Gene genealogy in a population of variable size. Heredity 78, 417–423 (1997)

    Article  Google Scholar 

  67. Rannala, B.: On the genealogy of a rare allele. Theor. Popul. Biol. 52, 216–223 (1997)

    Article  MATH  Google Scholar 

  68. Rohloff, K.R., Basar, T.: The detection of RCS worm epidemics. In: Proceedings of 3rd ACM Workshop on Rapid Malcode (WORM), pp. 81–86 (2005)

    Google Scholar 

  69. Rohloff, K.R., Basar, T.: Stochastic behavior of random constant scanning worms. In: Proceedings of 14th International Conference on Computer Communications and Networks (ICCCN), pp. 339–344 (2005)

    Google Scholar 

  70. Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Pers. Commun. Mag. 6(2), 46–55 (1999)

    Article  Google Scholar 

  71. Seneta, E.: On the supercritical Galton–Watson process with immigration. Math. Biosci. 7, 9–14 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  72. Seneta, E.: Nonnegative matrices and Markov chains, 3rd rev. edn. Springer Series in Statistics. Springer, New York (2006)

    Google Scholar 

  73. Seneta, E., Vere-Jones, D.: On quasi–stationary distributions in discrete–time Markov chains with a denumerable infinity of states. J. Appl. Probab. 3, 403–434 (1996)

    Article  MathSciNet  Google Scholar 

  74. Sevast’yanov, B.A.: Branching Processes. Nauka, Moscow (1971)

    MATH  Google Scholar 

  75. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  76. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  77. Watson, H.W., Galton, F.: On the probability of the extinction of families. J. Anthropol. Inst. Great Britain Ireland 4, 138–144 (1874)

    Article  Google Scholar 

  78. Yaglom, A.M.: Certain limit theorems of the theory of branching stochastic processes (in Russian). Dokl. Akad. Nauk. SSSR (n.s.) 56, 795–798 (1947)

    Google Scholar 

  79. Yan, X., Zou, Y.: Optimal internet worm treatment strategy based on the two-factor model. ETRI J. 30(1), 81–88 (2008)

    Article  MathSciNet  Google Scholar 

  80. Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and analysis. In: Proceedings of the 9th ACM conference on Computer and communications Security (CCS), pp. 138–147 (2002)

    Google Scholar 

  81. Zou, C.C., Gong, W., Towsley, D.: Worm propagation modeling and analysis under dynamic quarantine defense. In: Proceedings of 1st ACM Workshop on Rapid Malcode (WORM) pp. 51–60 (2003)

    Google Scholar 

  82. Zou, C.C., Gong, W., Towsley, D., Gao, L.: The monitoring and early detection of internet worms. IEEE/ACM Trans. Netw. 12(5), 961–974 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Daras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daras, N.J. (2014). Epidemiological Diffusion and Discrete Branching Models for Malware Propagation in Computer Networks. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_6

Download citation

Publish with us

Policies and ethics