Skip to main content

An Introduction to Hyperbolic Barycentric Coordinates and their Applications

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

Barycentric coordinates are commonly used in Euclidean geometry. The adaptation of barycentric coordinates for use in hyperbolic geometry gives rise to hyperbolic barycentric coordinates, known as gyrobarycentric coordinates. The aim of this chapter is to present the road from Einstein’s velocity addition law of relativistically admissible velocities to hyperbolic barycentric coordinates, along with applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behnke, H., Bachmann, F., Fladt, K., Kunle, H. (eds.): Fundamentals of Mathematics, vol. II. MIT Press, Cambridge, MA (1983) (Geometry, Translated from the second German edition by S.H. Gould, Reprint of the 1974 edition)

    Google Scholar 

  2. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006) (An introduction to quantum entanglement)

    Book  MATH  Google Scholar 

  3. Chen, J.-L., Ungar, A.A.: Introducing the Einstein metric to quantum computation and quantum information geometry. Found. Phys. Lett. 15(2), 189–197 (2002)

    Article  MathSciNet  Google Scholar 

  4. Chiribella, G., D’Ariano, G.M., Schlingemann, D.: Barycentric decomposition of quantum measurements in finite dimensions. J. Math. Phys. 51(2), 022111, 16 (2010)

    Google Scholar 

  5. Crowe, M.J.: A History of Vector Analysis. Dover, New York (1994) (The evolution of the idea of a vectorial system, Corrected reprint of the 1985 edition)

    Google Scholar 

  6. Einstein, A.: Zur Elektrodynamik Bewegter Körper [on the electrodynamics of moving bodies] (We use the English translation in [7] or in [22], or in http://www.fourmilab.ch/etexts/einstein/specrel/www/). Ann. Physik (Leipzig) 17, 891–921 (1905)

    Article  MATH  Google Scholar 

  7. Einstein, A.: Einstein’s Miraculous Years: Five Papers that Changed the Face of Physics. Princeton University Press, Princeton, NJ (1998). (Edited and introduced by John Stachel. Includes bibliographical references. Einstein’s dissertation on the determination of molecular dimensions – Einstein on Brownian motion – Einstein on the theory of relativity – Einstein’s early work on the quantum hypothesis. A new English translation of Einstein’s 1905 paper on pp. 123–160)

    Google Scholar 

  8. Feder, T.: Strong near subgroups and left gyrogroups. J. Algebra 259(1), 177–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferreira, M.: Factorizations of Möbius gyrogroups. Adv. Appl. Clifford Algebra 19(2), 303–323 (2009)

    Article  MATH  Google Scholar 

  10. Ferreira,M., Ren,G.: Möbius gyrogroups: a Clifford algebra approach. J. Algebra 328(1), 230–253 (2011)

    Google Scholar 

  11. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Vol. 1: Mainly Mechanics, Radiation, and Heat. Addison-Wesley, Reading/London (1963)

    Google Scholar 

  12. Fock, V.: The Theory of Space, Time and Gravitation. Macmillan, New York (1964) (Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book)

    Google Scholar 

  13. Foguel, T., Ungar, A.A.: Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3(1), 27–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foguel, T., Ungar, A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pac. J. Math 197(1), 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gray, J.: Möbius’s geometrical mechanics. In: Fauvel, J., Flood, R., Wilson, R. (eds.) Möbius and His Band, Mathematics and Astronomy in Nineteenth-Century Germany, pp. 78–103. The Clarendon Press/Oxford University Press, New York (1993)

    Google Scholar 

  16. Hausner, M.: A Vector Space Approach to Geometry. Dover, Mineola, NY (1998) (Reprint of the 1965 original)

    Google Scholar 

  17. Issa, A.N.: Gyrogroups and homogeneous loops. Rep. Math. Phys. 44(3), 345–358 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Issa,A.N.: Left distributive quasigroups and gyrogroups. J. Math. Sci. Univ. Tokyo 8(1), 1–16 (2001)

    Google Scholar 

  19. Kasparian, A.K., Ungar, A.A.: Lie gyrovector spaces. J. Geom. Symm. Phys. 1(1), 3–53 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Kuznetsov, E.: Gyrogroups and left gyrogroups as transversals of a special kind. Algebra Discrete Math. 3, 54–81 (2003)

    Google Scholar 

  21. Lévay, P.: Thomas rotation and the mixed state geometric phase. J. Phys. A 37(16), 4593–4605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity. Dover, New York, NY (undated) (With notes by A. Sommerfeld, Translated by W. Perrett and G. B. Jeffery, A collection of original memoirs on the special and general theory of relativity)

    Google Scholar 

  23. Marsden, J.E.: Elementary Classical Analysis. W. H. Freeman, San Francisco (1974) (With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver)

    Google Scholar 

  24. Miller, A.I.: Albert Einstein’s Special Theory of Relativity. Springer, New York (1998) (Emergence (1905) and early interpretation (1905–11), Includes a translation by the author of Einstein’s “On the electrodynamics of moving bodies”, Reprint of the 1981 edition)

    Book  Google Scholar 

  25. Møller, C.: The Theory of Relativity. Clarendon Press, Oxford (1952)

    Google Scholar 

  26. Mumford, D., Series, C., Wright, D.: Indra’s Pearls: The Vision of Felix Klein. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  27. Rassias, Th.M.: Book review: analytic hyperbolic geometry and Albert Einstein’s special theory of relativity, by Abraham A. Ungar. Nonlinear Funct. Anal. Appl. 13(1), 167–177 (2008)

    Google Scholar 

  28. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, vol. 149, 2nd edn. Springer, New York (2006)

    Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  30. Sexl, R.U., Urbantke, H.K.: Relativity, Groups, Particles. Springer Physics. Springer, Vienna (2001) (Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke)

    Google Scholar 

  31. Sönmez, N., Ungar, A.A.: The Einstein relativistic velocity model of hyperbolic geometry and its plane separation axiom. Adv. Appl. Clifford Algebra 23, 209–236 (2013)

    Google Scholar 

  32. Ungar, A.A.: Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1(1), 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  33. Ungar, A.A.: The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities. Appl. Math. Lett. 1(4), 403–405 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ungar, A.A.: Thomas precession and its associated grouplike structure. Am. J. Phys. 59(9), 824–834 (1991)

    Article  MathSciNet  Google Scholar 

  35. Ungar, A.A.: Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Fundamental Theories of Physics, vol. 117. Kluwer, Dordrecht (2001)

    Google Scholar 

  36. Ungar, A.A.: The hyperbolic geometric structure of the density matrix for mixed state qubits. Found. Phys. 32(11), 1671–1699 (2002)

    Article  MathSciNet  Google Scholar 

  37. Ungar, A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific, Hackensack, NJ (2005)

    Book  Google Scholar 

  38. Ungar, A.A.: Gyrovector spaces and their differential geometry. Nonlinear Funct. Anal. Appl. 10(5), 791–834 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Ungar, A.A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World Scientific, Hackensack, NJ (2008)

    Book  MATH  Google Scholar 

  40. Ungar, A.A.: From Möbius to gyrogroups. Am. Math. Mon. 115(2), 138–144 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Ungar, A.A.: A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool, San Rafael, CA (2009)

    Google Scholar 

  42. Ungar, A.A.: Hyperbolic barycentric coordinates. Aust. J. Math. Anal. Appl. 6(1), 1–35 (2009)

    MathSciNet  Google Scholar 

  43. Ungar, A.A.: The hyperbolic triangle incenter. Dedicated to the 30th anniversary of Th.M. Rassias’ stability theorem. Nonlinear Funct. Anal. Appl. 14(5), 817–841 (2009)

    Google Scholar 

  44. Ungar, A.A.: Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction. World Scientific, Hackensack, NJ (2010)

    Book  Google Scholar 

  45. Ungar, A.A.: Hyperbolic Triangle Centers: THe Special Relativistic Approach. Springer, New York (2010)

    Google Scholar 

  46. Ungar, A.A.: When relativistic mass meets hyperbolic geometry. Commun. Math. Anal. 10(1), 30–56 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Ungar, A.A.: Gyrations: the missing link between classical mechanics with its underlying Euclidean geometry and relativistic mechanics with its underlying hyperbolic geometry. In: Essays in Mathematics and Its Applications in Honor of Stephen Smale’s 80th Birthday, pp. 463–504. Springer, Heidelberg, (2012). arXiv 1302.5678 (math-ph)

    Google Scholar 

  48. Ungar, A.A.: Möbius transformation and Einstein velocity addition in the hyperbolic geometry of Bolyai and Lobachevsky. In: Nonlinear Analysis. Springer Optimization and Its Applications, vol. 68, pp. 721–770. Springer, New York (2012) (Stability, Approximation, and Inequalities. In honor of Themistocles M. Rassias on the occasion of his 6oth birthday)

    Google Scholar 

  49. Walter, S.: Book Review: beyond the Einstein addition law and its gyroscopic Thomas precession: the theory of gyrogroups and gyrovector spaces, by Abraham A. Ungar. Found. Phys. 32(2), 327–330 (2002)

    Article  Google Scholar 

  50. Yiu, P.: The uses of homogeneous barycentric coordinates in plane Euclidean geometry. Int. J. Math. Educ. Sci. Technol. 31(4), 569–578 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Albert Ungar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ungar, A.A. (2014). An Introduction to Hyperbolic Barycentric Coordinates and their Applications. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_18

Download citation

Publish with us

Policies and ethics