Skip to main content

Exotic PDEs

  • Chapter
  • First Online:
  • 1018 Accesses

Abstract

In the framework of the PDE’s algebraic topology, previously introduced by A. Prástaro, are considered exotic differential equations, i.e., differential equations admitting Cauchy manifolds N identifiable with exotic spheres, or such that their boundaries ∂ N are exotic spheres. For such equations are obtained local and global existence theorems and stability theorems. In particular the smooth (four-dimensional) Poincaré conjecture is proved. This allows to complete the previous Theorem 4.59 in Prástaro (Essays in Mathematics and Its Applications (Dedicated to Stephen Smale for his 80th birthday), Springer, Heidelberg/New York/Dordrecht/London, pp. 369–419, 2012) also for the case n = 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See also [70, 71, 73, 76, 77, 79] for related works in the category of quantum (super)manifolds in the sense introduced by A. Prástaro.

  2. 2.

    In this paper we denote by SX the suspension of a topological space X. (For details and general informations on algebraic topology see e.g. [61, 92, 98, 99, 101]. In this paper we will use the following notation: \(\thickapprox \) homeomorphism; \(\mathop{\cong}\) diffeomorphism; homotopy equivalence; ≃ homotopy.) Therefore SE n is the suspension of the CW-complex E n .

  3. 3.

    E is finite iff there is an integer N such that E n  = S nN E N for n ≥ N and the complex E N is finite.

  4. 4.

    If n > 1 then G must be abelian.

  5. 5.

    If F is cofinal and \(K_{n} \subset E_{n}\) is a finite subcomplex, then there is an m such that \(S^{m}K_{n} \subset F_{n+m}\). Intersection of two cofinal subspectra is cofinal and if G ⊂ F ⊂ E are subspectra such that F is cofinal in E and G is cofinal in F, then G is cofinal in E. An arbitrary union of cofinal subspectra is cofinal.

  6. 6.

    Let E and F be spectra and f: E → F a function. If F  ⊂ F is a cofinal subspectrum then there is a cofinal subspectrum E  ⊂ E with \(f(E^{{\prime}}) \subset F^{{\prime}}\). (Composition of maps is now possible!) In the category \(\mathcal{S}\) any spectrum is equivalent to any cofinal subspectrum of its.

  7. 7.

    For any topological space X we set\(X^{+} \equiv X \sqcup \{{\ast}\}\). (If X is not compact X + is the Alexandrov compactification to a point.) In particular if \(X = I \equiv [0, 1] \subset \mathbb{R}\), then one takes {∗} as base point.

  8. 8.

    For definitions of generalized (co)homology theories see, e.g., [61, 92].

  9. 9.

    Here we have used the fact that E(SX) is a cofinal subspectrum of Σ E(X) and hence the inclusion i: E(SX) → Σ E(X) induces an isomorphism i .

  10. 10.

    Let \(\mathcal{U}\) be an abelian category. A differential object in \(\mathcal{U}\) is a pair (A,d) where \(A \in Ob(\mathcal{U})\) and \(d \in \mathrm{Hom}_{\mathcal{U}}(A; A)\) such that d 2 = 0. Let \(\mathcal{D}(\mathcal{U})\) be the category of differential objects in \(\mathcal{U}\) . We call homology the additive functor \(H: \mathcal{D}(\mathcal{U}) \rightarrow \mathcal{U}\) , given by \(H(A,d) =\ker (d)/\mbox{ im}\ \ (d) = Z(A)/B(A)\) , where Z(A) is the set of cycles of A and B is the set of boundaries of A. H(A) is the homology of (A,d). Then, a spectral sequence in the category \(\mathcal{U}\) is a sequence of differential objects of \(\mathcal{U}\) : {E n ,d n }, n = 1, 2,…, such that H(E n ,d n ) = E n+1 , n = 1, 2,…. (See, e.g., [43, 57].)

  11. 11.

    For the homological definition of orientability see next Remark 3.

  12. 12.

    In particular, for k = n, \(F_{k}\mathop{\cong}O(n)\), and for k = 1, \(F_{1}\mathop{\cong}S^{n-1}\).

  13. 13.

    By the Stiefel–Whitney classes of an n-dimensional manifold M, one means the corresponding classes of TM.

  14. 14.

    Universal classifying space for the group SO(n).

  15. 15.

    If M is a closed and connected manifold of dimension k, admitting a finite triangulation, then \(H_{k}(M; \mathbb{Z}_{2})\mathop{\cong}\mathbb{Z}_{2}\). The fundamental class of M is \([M] =\sum _{i}v_{i}^{k}\), i.e., the sum of all k-simplexes.

  16. 16.

    A partition (i1 ,…,i r ) of n is nondyadic if none of the i β are of the form 2 s − 1.

  17. 17.

    Pontrjagin numbers are determined by means of homonymous characteristic classes belonging to \(H^{\bullet }(BG, \mathbb{Z})\) , where BG is the classifying space for G-bundles, with G = S p (n).

  18. 18.

    \(\mathbb{R}\mathbb{P}^{k}\) are orientable manifolds iff \(k \in \mathbb{N}\) is odd. P(2 r − 1,s2 r ) are orientable manifolds. One has \(\dim P(m,n) = m + 2n\).

  19. 19.

    In Table 4 are resumed relations between spectra, generalized (co)homologies, and some distinguished examples. Let us emphasize the relation with Brown’s representable theorem. A functor \(F: (\mathcal{W}^{\bullet {\prime}})^{op} \rightarrow \mathcal{S}_{et}\) is representable, i.e., F is equivalent to \(\mathrm{Hom}_{\mathcal{W}^{\bullet {\prime}}}(-; C)\) for some CW-complex C, iff the following conditions are satisfied. (i)(Wedge axiom). \(F(\vee _{\alpha }X_{\alpha })\mathop{\cong}\prod _{\alpha }F(X_{\alpha })\); (ii)(Mayer–Vietoris axiom). For any CW complex W covered by two subcomplexes U and V, and any elements u ∈ F(U), v ∈ F(V ), such that u and v restrict to the same element of \(F(U\bigcap V )\), there is an element w ∈ F(W) restricting to u and v, respectively. In the particular case of singular cohomology, one has \(H^{n}(X; A)\mathop{\cong}\mathrm{Hom}(X; K(A,n))\), i.e., the singular cohomology functor is representable. Thanks to extended versions of Brown’s representable theorem one can prove that all homology theories come from spectra, or by considering multiplicative operations, all homology theories come from ring spectra with multiplication μ: EE → E and the unity η: E(S 0) → E.

  20. 20.

    These module structures \(\mathcal{A}^{\bullet }\times H^{\bullet }(X; \mathbb{Z}_{p}) \rightarrow H^{\bullet }(X; \mathbb{Z}_{p})\) , allow us to understand that there are strong constraints just on the space X in order to obtain cohomology spaces \(H^{\bullet }(X; \mathbb{Z}_{p})\) with a prefixed structure. For example, do not exist spaces X with \(H^{\bullet }(X; \mathbb{Z}_{p}) = \mathbb{Z}[\alpha ]\) , unless α has dimension 2 or 4, where there examples \(\mathbb{C}P^{\infty }\) and \(\mathbb{H}P^{\infty }\).

  21. 21.

    A cohomology operations is a natural transformation between cohomology functors. One says that a cohomology operation is stable if it commutes with the suspension functor S. For example the cup product squaring operator H n (X; R) → H 2n (X; R), x↦x ∪ x, where R is a ring and X a topological space, is an instable cohomology operation. Instead, are stable the following Steenrod operations: \(Sq^{i}: H^{n}(X; \mathbb{Z}_{2}) \rightarrow H^{n+i}(X; \mathbb{Z}_{2})\) and \(P^{i}: H^{n}(X; \mathbb{Z}_{2}) \rightarrow H^{n+2i(p-1)}(X; \mathbb{Z}_{2})\) . (In Table  5 are resumed some fundamental properties of Sq i.)

  22. 22.

    A Galois field (or finite field) is a field that contains only finitely many elements. These are classified by q = p k if they contains q elements. Each Galois field with q elements is the splitting field of the polynomial x qx. Recall that the splitting field of a polynomial p(x) over a field K is a field extension L of K over which p(x) factorizes into linear factors xa i , and such that a i generates L over K, i.e, L = K(a i ). (In Table 6 are reported some properties of field extensions useful in the paper.) The extension L of minimal degree over K in which p splits exists and is unique up to isomorphism, identified by the Galois group of p. (In Table 7 are reported some fundamental properties and examples of Galois groups.)

  23. 23.

    \(\mathcal{A}^{\bullet }\) has a natural structure of Hopf algebra with commutative, associative comultiplication \(\psi: \mathcal{A}^{\bullet }\rightarrow \mathcal{A}^{\bullet }\otimes \mathcal{A}^{\bullet }\), given by \(\psi (\mathcal{A}^{k}) =\sum _{i+j=k}\mathcal{A}^{i} \otimes \mathcal{A}^{j}\). Let us denote by \(\mathcal{A}_{\bullet }\equiv \mathrm{Hom}_{\vert \vert }(\mathcal{A}^{\bullet }; \mathbb{F}_{q}) = \oplus _{n}\mathcal{A}_{n} = \oplus _{n}\mathrm{Hom}_{\mathbb{F}_{q}}(\mathcal{A}^{n}; \mathbb{F}_{q})\) the dual vector space to \(\mathcal{A}^{\bullet }\). One has the canonical evaluation pairing \(<,>: \mathcal{A}^{\bullet }\times \mathcal{A}_{\bullet }\rightarrow \mathbb{F}_{q}\), < f, α > = α(f). One has the following isomorphism of \(\mathbb{F}_{q}\)-Hopf algebras \(\mathcal{A}_{\bullet }\mathop{\cong}\mathbb{F}_{q}[\xi _{1},\xi _{2},\xi _{3},\cdots \,,\xi _{k},\cdots \,]\), where \(\deg (\xi _{k}) = q^{k-1}\), \(k \in \mathbb{N}\), and comultiplication \(\phi: \mathcal{A}_{\bullet }\rightarrow \mathcal{A}_{\bullet }\otimes \mathcal{A}_{\bullet }\), given by \(\phi (\xi _{k}) =\sum _{i+j=k}\xi _{i}^{q^{j} } \otimes \xi _{j}\).

  24. 24.

    The (co)homological interpretation of the Bockstein operator is associated with a short exact sequence of chain complexes in an abelian category. In fact to such a sequence there corresponds a long exact sequence . The boundary maps \(\delta _{n+1}: H_{n+1}(C_{\bullet }) \rightarrow H_{n}(A_{\bullet })\) are just the Bockstein homomorphisms. In particular, if is a short exact sequence of abelian groups and \(A_{\bullet } = E_{\bullet } \otimes A\), \(B_{\bullet } = E_{\bullet } \otimes B\), \(C_{\bullet } = E_{\bullet } \otimes C\), with E a chain complex of free, or at least torsion free, abelian groups, then the Bockstein homomorphisms are induced by the corresponding short exact sequence . Similar considerations hold for cochain complexes. in such cases the Bockstein homomorphism increases the degree, i.e., \(\beta: H^{n}(C^{\bullet }) \rightarrow H^{n+i}(A^{\bullet })\).

  25. 25.

    The third integral Stiefel–Whitney class is the obstruction to a spin c-structure on X. (In Table 8 are also summarized, for any convenience, fundamental properties of the Whitney-Stiefel classes.)

  26. 26.

    Let us also emphasize that we can recognize webs on PDEs, by looking inside the geometric structure of PDEs. By means of such webs, we can solve (lower dimensional) Cauchy problems. This is important in order to decide about the “admissibility” of integral manifolds in integral bordism problems. However these aspects are not explicitly considered in this paper. They are studied in some details in other previous works about the PDE’s algebraic topology by A. Prástaro [3, 4]. For complementary informations on geometry of PDEs, see, e.g., Refs. [4, 810, 25, 26, 28, 40, 41, 56, 58, 59, 6169, 80].

  27. 27.

    In other words the quantum bordism group of E k is the integral bordism group of \(J_{n}^{k}(W)\) relative to E k . (This language reproduces one in algebraic topology for couples (X, Y ) of differentiable manifolds, where Y ⊂ X.)

  28. 28.

    This means that \(N_{1} \in [N_{2}] \in \varOmega _{n-1}^{E_{k}}\), iff \(N_{1}^{(\infty )} \in [N_{2}^{(\infty )}] \in \varOmega _{n-1}^{E_{\infty }}\). (See Refs.[62, 78] for notations.)

  29. 29.

    This is, in general, an extended Hopf algebra. (See Refs. [59, 60].)

  30. 30.

    \(\mathfrak{C}ons(E_{k})\) can be identified with the spectral term \(E_{1}^{0,n-1}\) of the spectral sequence associated with the filtration induced in the graded algebra \(\varOmega ^{\bullet }(E_{\infty }) \equiv \oplus _{q\geq 0}\varOmega ^{q}(E_{\infty })\), by the subspaces \(C\varOmega ^{q}(E_{\infty }) \subset \varOmega ^{q}(E_{\infty })\). (For abuse of language we shall call “conservation laws of k-order”, characteristic integral (n − 1)-forms too. Note that \(C\varOmega ^{0}(E_{k}) = 0\). See also Refs. [5760, 62].)

  31. 31.

    It is important to note that can be \(\mathcal{I}(E_{k})^{p}\not =0\) even if E k is p-cohomologic trivial, i.e., \(H^{p}(E_{k}; \mathbb{R}) = 0\) . This, for example, can happen if E k is contractible to a point.

  32. 32.

    For example for the d’Alembert equation one can see that for any conservation law ω one has < ω, N > = 0, where N is any admissible one-dimensional compact integral manifold of d A), but \(\omega \not\in [0] \in E_{1}^{0,n-1}\).

  33. 33.

    The following Refs. [7, 1113, 21, 3439, 42, 4446, 46, 4852, 82, 83, 8688, 91, 96, 97, 100, 102] are important background for differential structures and exotic spheres.

  34. 34.

    For the definition of the groups Θn , see [74].

  35. 35.

    It is well known that the Schönflies problem is related to extensions of the Jordan–Brouwer theorem. (See, e.g., [42].) Let us emphasize that the lemma does not necessitate to work in the category of topological spaces. In fact, it is well known that topological embeddings f: S2 → S 3 do not necessarily have simply connected the two separate components of S 3 ∖f(S 2 ). In fact this is just the case of the Alexander horned sphere Σ 2 ⊂ S 3 [5].

  36. 36.

    The reduced homology groups \(\tilde{H}_{p}(X)\), of non-empty space X, are the homology groups of the augmented chain complex:

    , where ε can be considered generated by the chain \([\varnothing ]\mapsto X\), sending the simplex with no-vertices (empty simplex) to X, i.e., \(\epsilon (\sum _{i}n_{i}\sigma ) =\sum _{i}n_{i}\). Since ε ∂ i  = 0, ε induces a map \(H_{0}(X) \rightarrow \mathbb{Z}\) with kernel \(\tilde{H}_{0}(X)\), so one has \(H_{0}(X)\mathop{\cong}\tilde{H}_{0}(X)\bigoplus \mathbb{Z}\), and \(H_{p}(X)\mathop{\cong}\tilde{H}_{p}(X)\), \(\forall p > 0\). Therefore, we get \(\tilde{H}_{0}(pt)\mathop{\cong}0\). Furthermore, one has \(\tilde{H}_{p}(X,A)\mathop{\cong}H_{p}(X,A)\), for any couple (X, A), \(X \supset A\not =\varnothing \), and \(\tilde{H}_{p}(X) = H_{p}(X,x_{0})\).

  37. 37.

    The Rokhlin invariant of a spin 3-manifold X is the signature of any spin 4-manifold V, such that ∂ V = X, is well defined mod 16. A spin structure exists on a manifold M, if its second Stiefel–Whitney class is trivial: w 2(M) = 0. These structures are classified by \(H^{1}(M; \mathbb{Z}_{2})\mathop{\cong}H_{1}(M; \mathbb{Z}_{2})\). Therefore, homology 3-spheres have an unique spin structure, hence for them the Rokhlin invariant is well defined. In particular the Poincaré homology sphere bounds a spin 4-manifold with intersection form E 8, so its Rokhlin invariant is 1.

  38. 38.

    These are three-dimensional manifolds endowed with a S 1-bundle structure over a two-dimensional orbifold. (See, e.g., [84].)

  39. 39.

    The existence of such a manifold X can be proved following a strategy similar to the one to prove Lemma 11.

References

  1. Adams, J.F.: Stable Homotopy and Generalized Homology. University of Chicago Press, Chicago (1974)

    Google Scholar 

  2. Adem, J.: The relations on Steenrod powers of cohomology classes. In: Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz, pp. 191–238. Princeton University Press, Princeton, NJ (1957)

    Google Scholar 

  3. Agarwal, R.P., Prástaro, A.: Geometry of PDE’s.III(I): webs on PDE’s and integral bordism groups. The general theory. Adv. Math. Sci. Appl. 17(1), 239–266 (2007); Geometry of PDE’s.III(II): webs on PDE’s and integral bordism groups. Applications to Riemannian geometry PDE’s. Adv. Math. Sci. Appl. 17(1), 267–281 (2007)

    Google Scholar 

  4. Agarwal, R.P., Prástaro, A.: Singular PDE’s geometry and boundary value problems. J. Nonlinear Conv. Anal. 9(3), 417–460 (2008); On singular PDE’s geometry and boundary value problems. Appl. Anal. 88(8), 1115–1131 (2009)

    Google Scholar 

  5. Alexander, J.W.: An example of simply connected surface bounding a region which is not simply connected. Proc. Nat. Acad. Sci. 10(1), 8–10 (1924)

    Article  Google Scholar 

  6. Boileau, M., Paoluzzi, L., Zimmermann, B.: A characterization of S 3 among homology spheres. Geom. Topol. Monogr. 4, 83–103 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bott, R., Milnor, J.W.: On the parallelizability of spheres. Bull. Am. Math. Soc. 64, 87–89 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldshmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Cartan, E.: Les systéms differentiels extérieurs et leurs applications géométriques. Hermann, Paris (1945)

    Google Scholar 

  10. Cartan, H.: Sur l’itération des opérations de Steenrod. Comment. Math. Helv. 29, 40–58 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casson, A.: Fibrations over spheres. Topology 6, 489–499 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerf, J.: Sur les difféomorphismes de la sphére de dimension trois (Γ 4 = 0). Lecture Notes in Mathematics, vol. 53. Springer, Berlin/New York (1968)

    Google Scholar 

  13. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, B., Knopp, D.: Ricci Flow: An Introduction. Mathematical Surveys and Monographs, vol. 119. American Mathematical Society, Providence (2004)

    Google Scholar 

  15. Chow, B., Chu, S.C., Gliekenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part I: Geometric Aspects. Mathematical Surveys Monographs, vol. 135. American Mathematical Society, Providence (2008)

    Google Scholar 

  16. Chow, B., Chu, S.C., Gliekenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects. Mathematical Surveys Monographs, vol. 144. American Mathematical Society, Providence (2008)

    Google Scholar 

  17. Dold, A.: Erzewgende der Thomschen algebra \(\mathfrak{N}\). Math. Zeitschr. 65, 25–35 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. Donaldson, S.K.: Self-dual connections and the topology of smooth 4-manifolds. Bull. Am. Math. Soc. 8, 81–83 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donaldson, S.K.: An application of gauge theory to four dimensional topology. J. Differ. Geom. 18, 279–315 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry-Methods and Applications. Part I; Part II; Part III. Springer, New York (1990). (Original Russian edition: Sovremennaja Geometrie: Metody i Priloženia. Moskva: Nauka, 1979)

    Google Scholar 

  21. Ferry, S., Ranicki, A.A., Rosenberg, J.: Novikov conjecture, rigidity and index theorems. In: Proceedings of 1993 Oberwolfach Conference. London Mathematical Society Lecture Notes, vols. 226, 227. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 1(3), 357–453 (1982)

    Google Scholar 

  23. Freedman, M., Quinn, F.: Topology of 4-Manifolds. Princeton Mathematical Series, vol. 39. Princeton University Press, Princeton (1990)

    Google Scholar 

  24. Freedman, M.H., Taylor, L.R.: A universal smoothing of four-space. J. Differ. Geom. 24(1), 69–78 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Goldschmidt, H.: Integrability criteria for systems of non-linear partial differential equations. J. Differ. Geom. 1, 269–307 (1967)

    MathSciNet  MATH  Google Scholar 

  26. Goldschmidt, H.: On the non-linear cohomology of Lie equations. V. J. Differ. Geom. 16, 595–674 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Gompf, R.E.: Three exotic \(\mathbb{R}^{4}\)’s and other anomalies. J. Differ. Geom. 18, 317–328 (1983); An infinite set of exotic \(\mathbb{R}^{4}\)’s. J. Differ. Geom. 21, 283–300 (1985)

    Google Scholar 

  28. Gromov, M.: Partial Differential Relations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  29. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  30. Hamilton, R.S.: Four-manifolds with positive Ricci curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    MATH  Google Scholar 

  31. Hamilton, R.S.: Eternal solutions to the Ricci flow. J. Differ. Geom. 38, 1–11 (1993)

    MATH  Google Scholar 

  32. Hamilton, R.S.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  Google Scholar 

  33. Hamilton, R.S.: A compactness property for solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7, 695–729 (1999)

    MATH  Google Scholar 

  34. Hirsch, M.: Obstruction theories for smoothing manifolds and mappings. Bull. Am. Math. Soc. 69, 352–356 (1963)

    Article  MATH  Google Scholar 

  35. Hirsch, M.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  36. Kawakami, T.: Algebraic and Nash realizations of vector bundles and triviality of equivariant algebraic and Nash vector bundles. Bull. Fac. Educ. Wakayama Univ. Nat. Sci. 57, 1–10 (2001)

    MathSciNet  Google Scholar 

  37. Kervaire, M.A., Milnor, J.W.: Groups of homotopy spheres: I. Ann. Math. 77(3), 504–537 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kirby, R.C., Siebenman, L.C.: On the triangulation of manifolds and the Hauptveruntumg. Bull. Am. Math. Soc. 75, 742–749 (1969)

    Article  MATH  Google Scholar 

  39. Klingenberg, W.: Neue ergebnisse über konvexe flächen. Comment. Math. Helv. 34, 17–36 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  40. Krasilshchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Jet Spaces and Nonlinear Partial Differential Equations. Gordon & Breach, New York (1986)

    Google Scholar 

  41. Lychagin, V., Prástaro, A.: Singularities of Cauchy data, characteristics, cocharacteristics and integral cobordism. Differ. Geom. Appl. 4, 283–300 (1994)

    Article  MATH  Google Scholar 

  42. Mazur, B.: On embeddings of spheres. Bull. Am. Math. Soc. 65, 59–65 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  43. McCleary, J.: User’s Guide to Spectral Sequences. Publish or Perish, Delaware (1985)

    MATH  Google Scholar 

  44. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64(2), 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  45. Milnor, J.: The Steenrod algebra and its dual. Ann. Math. 67(2), 150–171 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  46. Milnor, J.: An unique factorization theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1965)

    Article  MathSciNet  Google Scholar 

  47. Milnor, J., Moore, J.: On the structure of Hopf algebras. Ann. Math. 81(2), 211–264 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  48. Moise, E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermuntung. Ann. Math. Sec. Ser. 56, 96–114 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  49. Moise, E.: Geometric Topology in Dimension 2 and 3. Springer, Berlin (1977)

    Book  Google Scholar 

  50. Munkres, J.R.: Obstructions to smoothing a piecewise differential homeomorphisms. Ann. Math. 72, 521–554 (1960); Obstructions to imposing differentiable structures. Ill. J. Math. 8, 361–376 (1964)

    Google Scholar 

  51. Nash, J.: Real algebraic manifolds. Ann. Math. 56(2), 405–421 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ohkawa, T.: The injective hull of homotopy types with respect to generalized homology functors. Hiroshima Math. J. 19, 631–639 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Perelman, G.: The entropy formula for the Ricci flow and its geometry applications (2002). arXiv:math/0211159

    Google Scholar 

  54. Perelman, G.: Ricci flow with surgery on three-manifolds (2003). arXiv:math/0303109

    Google Scholar 

  55. Pontrjagin, L.S.: Smooth manifolds and their applications homotopy theory. Am. Math. Soc. Transl. 11, 1–114 (1959)

    MathSciNet  Google Scholar 

  56. Prástaro, A.: Quantum geometry of PDE’s. Rep. Math. Phys. 30(3), 273–354 (1991). doi:10.1016/0034-4877(91)90063-S

    Article  MathSciNet  MATH  Google Scholar 

  57. Prástaro, A.: Geometry of PDE’s and Mechanics. World Scientific, Denvers, CO (1996)

    Book  Google Scholar 

  58. Prástaro, A.: Quantum and integral (co)bordisms in partial differential equations. Acta Appl. Math. 51, 243–302 (1998). doi:10.1023/A:1005986024130

    Article  MathSciNet  MATH  Google Scholar 

  59. Prástaro, A.: (Co)bordism groups in PDE’s. Acta Appl. Math. 59(2), 111–202 (1999). doi:10.1023/A:1006346916360

  60. Prástaro, A.: (Co)bordism groups in quantum PDE’s. Acta Appl. Math. 64(2/3), 111–217 (2000). doi:10.1023/A:1010685903329

  61. Prástaro, A.: Quantized Partial Differential Equations. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  62. Prástaro, A.: Geometry of PDE’s. I: integral bordism groups in PDE’s. J. Math. Anal. Appl. 319, 547–566 (2006). doi:10.1016/j.jmaa.2005.06.044

    MATH  Google Scholar 

  63. Prástaro, A.: Geometry of PDE’s. II: variational PDE’s and integral bordism groups. J. Math. Anal. Appl. 321, 930–948 (2006). doi:10.1016/j.jmaa.2005.08.037

    MATH  Google Scholar 

  64. Prástaro, A.: (Un)stability and bordism groups in PDE’s. Banach J. Math. Anal. 1(1), 139–147 (2007)

    Google Scholar 

  65. Prástaro, A.: Geometry of PDE’s. IV: Navier-Stokes equation and integral bordism groups. J. Math. Anal. Appl. 338(2), 1140–1151 (2008). doi:10.1016/j.jmaa.2007.06.009

    MATH  Google Scholar 

  66. Prástaro, A.: On the extended crystal PDE’s stability.I: the n-d’Alembert extended crystal PDE’s. Appl. Math. Comput. 204(1), 63–69 (2008). doi:10.1016/j.amc.2008.05.141. doi:10.1016/j.amc.2008.05.141

  67. Prástaro, A.: On the extended crystal PDE’s stability.II: entropy-regular-solutions in MHD-PDE’s. Appl. Math. Comput. 204(1), 82–89 (2008). doi:10.1016/j.amc.2008.05.142

  68. Prástaro, A.: Extended crystal PDE’s stability.I: the general theory. Math. Comput. Model. 49(9–10), 1759–1780 (2009). doi:10.1016/j.mcm.2008.07.020

  69. Prástaro, A.: Extended crystal PDE’s stability.II: the extended crystal MHD-PDE’s. Math. Comput. Model. 49(9–10), 1781–1801 (2009). doi:10.1016/j.mcm.2008.07.021

  70. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations.I: The quantum Poincaré conjecture. Nonlinear Anal. Theory Methods Appl. 71(12), 502–525 (2009). doi:10.1016/j.na.2008.11.077

  71. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations.II: Variational quantum PDE’s. Nonlinear Anal. Theory Methods Appl. 71(12), 526–549 (2009). doi:10.1016/j.na.2008.10.063

  72. Prástaro, A.: Exotic heat PDE’s. Commun. Math. Anal. 10(1), 64–81 (2011). arXiv: 1006.4483[math.GT]

  73. Prástaro, A.: Quantum extended crystal PDE’s. Nonlinear Stud. 18(3), 447–485 (2011). arXiv:1105.0166[math.AT].

  74. Prástaro, A.: Exotic heat PDE’s.II. In: Pardalos, P.M., Rassias, Th.M. (eds.) Essays in Mathematics and Its Applications (Dedicated to Stephen Smale for his 80th birthday.), pp. 369–419 Springer, Heidelberg/New York/Dordrecht/London (2012). doi:10.1007/978-3-642-28821-0. arXiv: 1009.1176[math.AT]

  75. Prástaro, A.: Exotic n-D’Alembert PDE’s. In: Georgiev, G., Pardalos, P., Srivastava, H.M. (eds.) Stability, Approximation and Inequalities. (Dedicated to Themistocles M. Rassias for his 60th birthday.), pp. 571–586. Springer, New York (2012). arXiv:1011.0081[math.AT]

  76. Prástaro, A.: Quantum extended crystal super PDE’s. Nonlinear Anal. Real World Appl. 13(6), 2491–2529 (2012). doi:10.1016/j.nonrwa.2012.02.014. arXiv: 0906.1363[math.AT]

  77. Prástaro, A.: Quantum exotic PDE’s. Nonlinear Anal. Real World Appl. 14(2), 893–928 (2013). doi:10.1016/j.nonrwa.2012.04.001. arXiv:1106.0862[math.AT]

  78. Prástaro, A.: Extended crystal PDE’s (2008–2011). arXiv: 0811.3693[math.AT]

  79. Prástaro, A.: Strong reactions in quantum super PDE’s. I: quantum hypercomplex exotic super PDE’s (2012–2013). arXiv:1205.2984[math.AT]

  80. Prástaro, A., Rassias, Th.M.: Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 8(2), 259–278 (2003)

    MathSciNet  MATH  Google Scholar 

  81. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  82. Radó, T.: Uber den Begriff von Riemannsche Fläche. Acta Sci. Math. (Szeged) 2, 101–120 (1924)

    Google Scholar 

  83. Schoen,R.S., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92(1), 47–71 (1988)

    Google Scholar 

  84. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–407 (1983)

    Article  MATH  Google Scholar 

  85. Serre, J.P.: Cohomologie module 2 des complexes d’Eilenberg MacLane. Comment. Math. Helv. 27, 198–232 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  86. Smale, S.: Generalized Poincaré conjecture in dimension greater than four. Ann. Math. 74(2), 391–406 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  87. Smale, S.: On the structure of manifolds. Am J. Math. 84, 387–399 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  88. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  89. Smith, L.: An algebraic introduction to the Steenrod algebra. Geom. Topol. Monogr. 11, 327–348 (2007)

    Article  Google Scholar 

  90. Stong, R.E.: Notes on Bordism Theories. Am. Math. Studies. Princeton University Press, Princeton (1968)

    Google Scholar 

  91. Sullivan, D.: On the Hauptvermuntung for manifolds. Bull. Am. Math. Soc. 73, 598–600 (1967)

    Article  MATH  Google Scholar 

  92. Switzer, A.S.: Algebraic Topology-Homotopy and Homology. Springer, Berlin (1976)

    Google Scholar 

  93. Taubes, C.H.: Self-dual connections on non-self-dual 4-manifolds. J. Differ. Geom. 17, 139–170 (1982)

    MathSciNet  MATH  Google Scholar 

  94. Taubes, C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Differ. Geom. 25, 363–430 (1987)

    MathSciNet  MATH  Google Scholar 

  95. Thom, R.: Quelques propriétés globales des variétés differentiable. Comment. Math. Helv. 28, 17–88 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  96. Tognoli, A.: Su una congettura di Nash. Ann. Scuola Norm. Sup. Pisa 27, 167–185 (1973)

    MathSciNet  MATH  Google Scholar 

  97. Tuschmann, W.: Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness. Math. Ann. 322(2), 413–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  98. Wall, C.T.C.: Determination of the cobordism ring. Ann. Math. 72, 292–311 (1960)

    Article  MATH  Google Scholar 

  99. Wall, C.T.C.: Surgery on Compact Manifolds. London Mathematical Society Monographs, vol. 1. Academic Press, New York (1970); Ranicki, A.A. (ed.) American Mathematical Society Surveys and Monographs, vol. 69, 2nd edn. American Mathematical Society (1999)

    Google Scholar 

  100. Whitehead, J.H.C.: Manifolds with transverse fields in Euclidean spaces. Ann. Math. 73, 154–212 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  101. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman, Glenview, IL (1971)

    MATH  Google Scholar 

  102. Weyl, H.: Zur Infinitesimalgeometrie: Einertnung der projectiven und der konformen Auffassung, Selecta Hermann Weyl, pp. 249–261. Birkhäuser-Verlag, Basel/Stuttgart (1956)

    Google Scholar 

  103. Wu, W.-T.: Sur les puissances de Steenrod. Colloque de Topologie de Strasbourg, 1951, no. IX, La Biblioteque Nationale et Universitaire de Strasbourg, 9 (1952)

    Google Scholar 

Download references

Acknowledgements

I would like thank my colleague Themistocles Rassias for inviting me to write my contribution for this Springer book. A similar version of this work was early put on arXiv.1101.0283 [math.AT].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Prástaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prástaro, A. (2014). Exotic PDEs. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_16

Download citation

Publish with us

Policies and ethics