Skip to main content

Sampling and Rational Interpolation for Non-band-limited Signals

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

This paper concentrates on the frequency domain representation of non-band-limited continuous-time signals. Many LTI systems of practical interest can be represented using an Nth-order linear differential equation with constant coefficients. The frequency response of these systems is a rational function. Hence our aim is to give sampling and interpolation algorithms with good convergence properties for rational functions. A generalization of the Fourier-type representation is analyzed using special rational orthogonal bases: the Malmquist–Takenaka system for the upper and lower half plane. This representation is more efficient in particular classes of signals characterized with a priori fixed properties. Based on the discrete orthogonality of the Malmquist–Takenaka system we introduce new rational interpolation operators for the upper and lower half plane as well. Combining these two interpolations we can give exact interpolation for a large class of rational functions among them for the Runge test function. We study the properties of these rational interpolation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akay, H., Ninnes, B.: Orthonormal basis functions for continuous-time systems and L p converegence. Math. Control Signal Syst. 12, 295–305 (1999)

    Article  Google Scholar 

  2. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1): 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrut, J.P.: Linear rational interpolation of continous functions over an interval. In: Gautschi, W. (ed.) Proceedings of Symposia in Applied Mathematics. Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics, vol. 48, pp. 261–264. American Mathematical Society, Providence (1995)

    Google Scholar 

  4. Berrut, J.P., Mittelmann, H.D.: Lebesgue constant minimizing linear rational interpolation of continuous functions over an interval. Comput. Math. Appl. 33(6): 77–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berrut, J.P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. Series of Numerical Mathematics, vol. 151, pp. 27–51. Birkhauser Verlag, Basel (2005). http://plato.asu.edu/ftp/papers/paper105.pdf. ISBN 3-7643-7124-2

  6. Bokor, J., Schipp, F.: L system approximation algorithms generated by \(\varphi\) summation. IFAC Automatica J. 33, 2019–2024 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bokor, J., Schipp, F., Szabó, Z.: Identification of rational approximate models in H using generalized orthonormal basis. IEEE Trans. Automat. Contr. 44(1), 153–158 (1999)

    Article  MATH  Google Scholar 

  8. Bokor, J., Szabó, Z.: Frequency-Domain Identification in H 2, Modeling and Identification with Rational Orthogonal Basis Function, pp. 213–233. Springer, London (2005)

    Google Scholar 

  9. Chui, C.K., Chen, G., Signal Processing and Systems Theory. Series in Information Sciences, vol. 26. Springer, Berlin (1992)

    Google Scholar 

  10. Cima, J., Ross, W.: The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79, p. xii+199 MR1761913. American Mathematical Society, Providence (2000)

    Google Scholar 

  11. de Hoog, T.J.: Rational Orthonormal Basis and Related Transforms in Linear System Modeling, Netherlands by Ponsen and Looijn b.v., Netherlandes (2001)

    Google Scholar 

  12. Dodson, M.M., Silva, A.M.: Fourier analysis and the sampling theorem. Proc. R. Ir. Acad. 85A, 81–108 (1985)

    MathSciNet  Google Scholar 

  13. Džrbašjan, M.M.: Biorthogonal systems of rational functions and best approximant of the Cauchy kernel on the real axis. Math. USSR Sbornik 24(3), 409–433 (1974)

    Article  Google Scholar 

  14. Eisner, T., Pap, M.: Discrete orthogonality of the Malmquist-Takenaka system of the upper half plane and rational interpolation. J. Fourier Anal. Appl. (2013). doi:10.1007/s00041-013 -9285-2

    Google Scholar 

  15. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. J. Numerische Mathematik 107(2), 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gröchenig, K.: Reconstruction algorithms in irregular sampling. Math. Comput. 59, 181–194 (1992)

    Article  MATH  Google Scholar 

  17. Huggins, W.H.: Signal theory. IRE Trans. Circuit Theory (CT) 3, 210–216 (1956)

    Article  Google Scholar 

  18. Kautz, W.H.: Transient synthesis in the time domain. IRE Trans. Circuit Theory (CT) 1, 29–39 (1954)

    Google Scholar 

  19. Kilgore, T.: Rational approximation on infinite intervals. Comput. Math. Appl. 48, 1335–1343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lorentz, G.G., Golitschek, M., Makovoz, Y.: Constructive Approximation. Grundlehren der mathematischen Wissenschaften, vol. 304. Springer, Berlin (1996)

    Google Scholar 

  21. Malmquist, F.: Sur la détermination d’une classe functions analytiques par leurs dans un esemble donné de doints. In: Compute Rendus Six. Cong. Math. Scand, pp. 253–259. Kopenhagen (1925)

    Google Scholar 

  22. Mashreghi, J.: Representation Theorems in Hardy Spaces. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  23. Nashed, Z.M., Gilbert, W.G.: General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Control Signals Syst. 4, 363–390 (1991)

    Article  MATH  Google Scholar 

  24. Ninness, B., Gustafsson, F.: Unifying construction of orthonormal bases for system identification. Department of Electrical Engineering, University of Newcastle, Newcastle. Technical Report EE9443 (1994)

    Google Scholar 

  25. Pap, M.: Properties of discrete rational orthonormal systems. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna 2002, pp. 374–379. Dabra, Sofia (2003)

    Google Scholar 

  26. Pap, M., Schipp, F.: Malmquist-Takenaka systems and equilibrium conditions. Mathematica Pannonica 12(2), 185–194 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Parington, J.R.: Interpolation Identification and Sampling. London Mathematical Society Monographs, vol. 17. Oxford University Press, Oxford (1997)

    Google Scholar 

  28. Qian, T.: Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. 33(7), 880–891(2010). www.interscience.wiley.com. doi:10.1002/mma.1214

  29. Schipp, F., Gianone, L., Szabó, Z.: Identification in generalized orthonormal basis frequency domain approach. In: Proceedings of the 13th IFAC World Congress, pp. 387–392. San Francisco (1996)

    Google Scholar 

  30. Soumelidis, A., Bokor, J., Schipp, F.: Frequency domain representation of signals in rational orthogonal bases. In: Proceedings of the 10th Mediterranean Conference on Control and Automation (Med’ 2002). Lisabone, Portugal (2002)

    Google Scholar 

  31. Soumelidis, A., Pap, M., Schipp, F., Bokor, J.: Frequency domain identification of partial fraction models. In: Proceedings of the 15th IFAC World Congress, pp. 1–6. Barcelona, Spain (2002)

    Google Scholar 

  32. Soumelidis, A., Bokor, J., Schipp, F.: Detection of changes on signals and systems based upon representations in orthogonal rational bases. In: Proceedings of 5th IFAC Symposions on Fault Detection Supervision and Safety for Technical Processes (SAFEPROSS 2003), Washington, DC (2003) (on CD)

    Google Scholar 

  33. Szabados, J., Vertesi, P.: Interpolation of Functions. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  34. Szabó, Z.: Interpolation and quadrature formula for rational systems on the unit circle, Annales Univ. Sci. (Budapest) Sect. Comput. 21, 41–56 (2002)

    Google Scholar 

  35. Szegő, G., Orthonormal Polynomials, 401 p. American Mathematical Society, New York (1939)

    Google Scholar 

  36. Takenaka, S.: On the orthogonal functions and a new formula of interpolation, Jpn. J. Math. II, 129–145 (1925)

    Google Scholar 

  37. Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain, 3rd edn. (1st edn. 1935), 405 p. American Mathematical Society, Providence (1969)

    Google Scholar 

  38. Young, T.Y., Huggins, W.H.: Complementary signals and orthogonalized exponentials. IRE Trans. Circuit Theory 9, 362–370 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Pap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Király, B., Pap, M., Pilgermajer, Á. (2014). Sampling and Rational Interpolation for Non-band-limited Signals. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_12

Download citation

Publish with us

Policies and ethics