Skip to main content

The Planar Inverse Problem of Dynamics

  • Chapter
  • First Online:
Book cover Mathematics Without Boundaries
  • 1016 Accesses

Abstract

We consider the following version of the inverse problem of Dynamics: given a monoparametric family of planar curves, find the force field, conservative or not, which determines a material point to move on the curves of that family.

We present the partial differential equations which are satisfied by the potential and we clarify the role of the energy function.

Due to the nonuniqueness of the solution of the PDEs, it is natural to look for force fields in certain classes of functions (e.g., polynomial, homogeneous, or satisfying also another PDE).

In connection with the inverse problem of Dynamics, programmed motion is studied imposing the supplementary condition that the orbits lie in a preassigned region of the plane.

Applications in Celestial Mechanics, Geometrical Optics and Fluid Dynamics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anisiu, M.-C., Pál, Á.: Special families of orbits for the Hénon-Heiles type potential. Rom. Astron. J. 9, 179–185 (1999)

    Google Scholar 

  2. Anisiu, M.-C.: The Equations of the Inverse Problem of Dynamics. House of the Book of Science, Cluj-Napoca (2003) (in Romanian)

    Google Scholar 

  3. Anisiu, M.-C.: PDEs in the inverse problem of Dynamics. In: Barbu, V., et al. (eds.) Analysis and Optimization of Differential Systems, pp. 13–20. Kluwer Academic, Boston (2003)

    Chapter  Google Scholar 

  4. Anisiu, M.-C.: An alternative point of view on the equations of the inverse problem of dynamics. Inverse Probl. 20, 1865–1872 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anisiu, M.-C., Bozis, G.: Programmed motion for a class of families of planar orbits. Inverse Probl. 16, 19–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonov, V.A., Timoshkova, E.I.: Simple trajectories in a rotationally symmetric gravitational field. Astron. Rep. 37, 138–144 (1993)

    MathSciNet  Google Scholar 

  7. Boccaletti, D., Pucacco, G.: Theory of Orbits I. Springer, Berlin/Heidelberg (1996)

    Book  Google Scholar 

  8. Borghero, F., Bozis, G.: Isoenergetic families of planar orbits generated by homogeneous potentials. Meccanica 37, 545–554 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borghero, F., Bozis, G.: A two-dimensional inverse problem of geometrical optics. J. Phys. A Math. Gen. 38, 175–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bozis, G.: Inverse problem with two parametric families of planar orbits. Celest. Mech. Dyn. Astron. 60, 161–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bozis, G.: Szebehely inverse problem for finite symmetrical material concentrations. Astron. Astrophys. 134, 360–364 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Bozis, G.: Family boundary curves for autonomous dynamical systems. Celest. Mech. 31, 129–142 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bozis, G.: The inverse problem of dynamics: basic facts. Inverse Probl. 11, 687–708 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bozis, G., Anisiu, M.-C.: Families of straight lines in planar potentials. Rom. Astron. J. 11, 27–43 (2001)

    Google Scholar 

  15. Bozis, G., Anisiu, M.-C.: A solvable version of the inverse problem of dynamics. Inverse Probl. 21, 487–497 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bozis, G., Anisiu, M.-C.: Programmed motion in the presence of homogeneity. Astron. Nachr. 330, 791–796 (2009)

    Article  MATH  Google Scholar 

  17. Bozis, G., Anisiu, M.-C., Blaga, C.: Inhomogeneous potentials producing homogeneous orbits. Astron. Nachr. 318, 313–318 (1997)

    Article  MATH  Google Scholar 

  18. Bozis, G., Borghero, F.: An inverse problem in fluid dynamics. In: Monaco, R., et al. (eds.) Waves and Stability in Continuous Media - WASCOM 2001, pp. 89–94. World Scientific Publishing, Singapore (2002)

    Google Scholar 

  19. Bozis, G., Grigoriadou, S.: Families of planar orbits generated by homogeneous potentials. Celest. Mech. Dyn. Astron. 57, 461–472 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bozis, G., Ichtiaroglou, S.: Boundary curves for families of planar orbits. Celest. Mech. Dyn. Astron. 58, 371–385 (1994)

    Article  MathSciNet  Google Scholar 

  21. Broucke, R., Lass, H.: On Szebehely’s equation for the potential of a prescribed family of orbits. Celest. Mech. 16, 215–225 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caranicolas, N.D.: Potentials for the central parts of a barred galaxy. Astron. Astrophys. 332, 88–92 (1998)

    Google Scholar 

  23. Caranicolas, N.D., Innanen, K.A.: Periodic motion in perturbed elliptic oscillators. Astron. J. 103, 1308–1312 (1992)

    Article  Google Scholar 

  24. Carrasco, D., Vidal, C.: Periodic solutions, stability and non-integrability in a generalized Hénon-Heiles Hamiltonian system. J. Nonlinear Math. Phys. 20, 199–213 (2013)

    Article  MathSciNet  Google Scholar 

  25. Contopoulos, G., Bozis, G.: Complex force fields and complex orbits. J. Inverse Ill-Posed Probl. 8, 1–14 (2000)

    Article  MathSciNet  Google Scholar 

  26. Contopoulos, G., Zikides, M.: Periodic orbits and ergodic components of a resonant dynamical system. Astron. Astrophys. 90, 198–203 (1980)

    MathSciNet  Google Scholar 

  27. Dainelli, U.: Sul movimento per una linea qualunque. Giorn. Mat. 18, 271–300 (1880)

    MATH  Google Scholar 

  28. Érdi, B., Bozis, G.: On the adelphic potentials compatible with a set of planar orbits. Celest. Mech. Dyn. Astron. 60, 421–430 (1994)

    Article  MATH  Google Scholar 

  29. Galiullin, A.S.: Inverse Problems. Mir, Moscow (1984)

    Google Scholar 

  30. Gonzáles-Gascón, F., Gonzáles-Lopéz, A., Pascual-Broncano, P.J.: On Szebehely’s equation and its connection with Dainelli’s-Whittaker’s equations. Celest. Mech. 33, 85–97 (1984)

    Article  Google Scholar 

  31. Grigoriadou, S.: The inverse problem of dynamics and Darboux’s integrability criterion. Inverse Probl. 15, 1621–1637 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hénon, M., Heiles, C.: The applicability of the third integral of motion, some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  Google Scholar 

  33. Howard, J.E., Meiss, J.D.: Straight line orbits in Hamiltonian flows. Celest. Mech. Dyn. Astron. 105, 337–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ichtiaroglou, S., Meletlidou, E.: On monoparametric families of orbits sufficient for integrability of planar potentials with linear or quadratic invariants. J. Phys. A: Math. Gen. 23, 3673–3679 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kostov, N.A., Gerdjikov, V.S., Mioc, V.: Exact solutions for a class of integrable Hénon-Heiles-type systems. J. Math. Phys. 51, 022702.1–022702.13 (2010)

    Article  MathSciNet  Google Scholar 

  36. Luneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley/Los Angeles (1964)

    Google Scholar 

  37. van der Merwe, P.du T.: Solvable forms of a generalized Hénon-Heiles system. Phys. Lett. A 156, 216–220 (1991)

    Google Scholar 

  38. Miller, R.H., Smith, B.F.: Dynamics of a stellar bar. Astrophys. J. 227, 785–797 (1979)

    Article  Google Scholar 

  39. Mioc, V., Paşca, D., Stoica, C.: Collision and escape orbits in a generalized Hénon-Heiles model. Nonlinear Anal. Real 11, 920–931 (2010)

    Article  MATH  Google Scholar 

  40. Molnár, S.: Applications of Szebehely’s equation. Celest. Mech. 29, 81–88 (1981)

    Article  Google Scholar 

  41. Pál, Á., Anisiu, M.-C.: On the two-dimensional inverse problem of dynamics. Astron. Nachr. 317, 205–209 (1996)

    Article  MATH  Google Scholar 

  42. Puel, F.: Formulation intrinseque de l’équation de Szebehely. Celest. Mech. 32, 209–212 (1984)

    Article  MATH  Google Scholar 

  43. Serrin, J.: Mathematical Principles of Classical Fluid Mechanics. In: Flugge, S. (ed.) Fluid Dynamics I. Encyclopaedia of Physics, vol. 8/1, pp. 125–350, Springer, Berlin/Heidelberg (1959)

    Google Scholar 

  44. Szebehely, V.: On the determination of the potential by satellite observations. In: Proverbio, G. (ed.) Proceedings of the International Meeting on Earth’s Rotation by Satellite Observation, pp. 31–35. The University of Cagliari, Bologna (1974)

    Google Scholar 

  45. Szebehely, V., Lundberg, J., McGahee, W.J.: Potential in the central bar structure. Astrophys. J. 239, 880–881 (1980)

    Article  MathSciNet  Google Scholar 

  46. Whittaker, E.T.: Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

  47. Zotos, E.E.: Using new dynamical indicators to distinguish between order and chaos in a galactic potential producing exact periodic orbits and chaotic components. Astron. Astrophys. Trans. 4, 635–654 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira-Cristiana Anisiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anisiu, MC. (2014). The Planar Inverse Problem of Dynamics. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_1

Download citation

Publish with us

Policies and ethics