Skip to main content

Burns

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

Severe burn injury continues to represent a significant public health problem worldwide. More than one million burn injuries occur annually in the USA. Major burn injury is characterized by oxidative stress, a prolonged hypermetabolic, catabolic state, and immunosuppression. The systemic response to major burn injury is driven by a cascade of cytokines, catecholamines, and corticosteroids that are central to the hypermetabolic response. Resultantly, burn patients have increased cardiac work, increased myocardial oxygen consumption, tachycardia, lipolysis, liver dysfunction, severe muscle catabolism, increased protein degradation, insulin resistance, and growth retardation has been seen in children. The innate response to significant burn injury increases metabolism to such a profound degree that severely burn-injured patients would succumb to the effects of protein calorie malnutrition without nutritional supplementation. This post-burn hypermetabolism is associated with profound proteolysis resulting in lean body mass loss and muscle wasting.

Thus, providing the right balance of macro- and micronutrients, antioxidants, and energy is essential to mitigate the hypermetabolic and hypercatabolic state that results. International nutrition support guidelines advocate that enteral feedings should begin early in critically ill patients who have a functioning gastrointestinal tract. Providing severely burned patients with a high-carbohydrate, high-protein, low-fat enteral diet can lower the incidence of catabolism and pneumonia, compared to a high-fat, high-protein, low-carbohydrate product. While providing adequate calories and protein are the foundation of nutritional support, it is also important to provide vitamins and minerals, also known as micronutrients. Depressed levels of vitamin C, vitamin D, selenium, vitamin E, zinc, and copper have been reported in burn patients and these losses occur mainly through the skin and urine.

Some nutritional or metabolically active supplements have demonstrated promise in promoting anabolism in burn patients, including insulin, the anabolic steroid oxandrolone, and propranolol; however, ongoing and future research is necessary to better understand modulation of the hypermetabolic response to severe burn injury and continue to improve burn outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessey PQ, Lentz CW, Edelman LS, Faraklas I, Finocchiarro MA, Kemalyna KA, et al. National Burn Repository 2013 Report. Chicago: American Burn Association; National Burn Repository; 2013 [cited 2013 Sep 30]. Available at http://ameriburn.org/2013NBRAnnualReport.pdf. Accessed March 3, 2014.

  2. Rodriguez NA, Jeschke MG, Williams FN, Kamolz LP, Herndon DN. Nutrition in burns: Galveston contributions. JPEN J Parenter Enteral Nutr. 2011;35: 704–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Curreri PW, Luterman A. Nutritional support of the burned patient. Surg Clin North Am. 1978;58:1151.

    CAS  PubMed  Google Scholar 

  4. Waxman K, Rebello T, Pinderski L, O’Neal K, Khan N, Tourangeau S, Himes E, Cordill K. Protein loss across burn wounds. J Trauma. 1987;27:136–40.

    CAS  PubMed  Google Scholar 

  5. Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care. 2000;15:12–7.

    CAS  PubMed  Google Scholar 

  6. Hart DW, Wolf SE, Mlcak R, Chinkes DL, Ramzy PI, Obeng MK, Ferrando AA, Wolfe RR, Herndon DN. Persistence of muscle catabolism after severe burn. Surgery. 2000;128:312–9.

    CAS  PubMed  Google Scholar 

  7. Hart DW, Wolf SE, Chinkes DL, Gore DC, Micak RP, Beauford RB, et al. Determinants of skeletal muscle catabolism after severe burn. Ann Surg. 2000;232:455–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma. 2007;62:676–81.

    CAS  PubMed  Google Scholar 

  9. Keleman 3rd JJ, Cioffi Jr WG, Mason Jr AD, Mozingo DW, McManus WF, Pruitt Jr BA. Effect of ambient temperature on metabolic rate after thermal injury. Ann Surg. 1996;223:406–12.

    Google Scholar 

  10. Matsuda T, Clark N, Hariyani GD, Bryant RS, Hanumadass ML, Kagan RJ. The effect of burn wound size on resting energy expenditure. J Trauma. 1987;27:115–8.

    CAS  PubMed  Google Scholar 

  11. Mlcak RP, Jeschke MG, Barrow RE, Herndon DN. The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg. 2006;244:121–30.

    PubMed Central  PubMed  Google Scholar 

  12. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25:37–44.

    PubMed  Google Scholar 

  13. Faisy C, Candela Llerena M, Savalle M, Savalle M, Mainardi JL, Fagon JY. Early ICU energy deficit is a risk factor for Staphylococcus aureus ventilator-associated pneumonia. Chest. 2011;140:1254–60.

    PubMed  Google Scholar 

  14. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeax RNMC, Delarue J, Berger MM. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24: 502–9.

    PubMed  Google Scholar 

  15. Moran L, Custer P, Murphy G. Nutritional assessment of lean body mass. JPEN J Parenter Enteral Nutr. 1980;4:595.

    Google Scholar 

  16. Kreymann K, Berger M, Deutz N, Hiesmayr M, Jolliet P, Kazandjiev G. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–23.

    CAS  PubMed  Google Scholar 

  17. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–73.

    PubMed  Google Scholar 

  18. Jacobs DG, Jacobs DO, Kudsk KA, et al. EAST Practice Management Guidelines Workgroup. Practice management guidelines for nutritional support of the trauma patient. J Trauma. 2004;57:660–78.

    PubMed  Google Scholar 

  19. Evidence-Based Guidelines Group ABA. Practice guidelines for burn care. J Burn Care Rehabil. 2001;22:59–65S.

    Google Scholar 

  20. Alverdy J, Chi HS, Sheldon GF. The effect of parenteral nutrition on gastrointestinal immunity. The importance of enteral stimulation. Ann Surg. 1985; 202:681.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Holt B, Graves C, Faraklas I, Cochran A. Compliance with nutrition support guidelines in acutely burned patients. Burns. 2012;38(5):645–9.

    PubMed  Google Scholar 

  22. Mosier MJ, Pham TN, Klein MB, Gibran NS, Arnoldo BD, Gamelli RL, Tompkins RG, Herndon DN. Early enteral nutrition in burns: compliance with guidelines and associated outcomes in a multicenter study. J Burn Care Res. 2011;32:104–9.

    PubMed  Google Scholar 

  23. Khorasani EN, Mansouri F. Effect of early enteral nutrition on morbidity and mortality in children with burns. Burns. 2010;36:1067–71.

    PubMed  Google Scholar 

  24. Blackburn GL, Bistrian BR. Nutritional care of the injured and/or septic patient. Surg Clin North Am. 1976;56:1195.

    CAS  PubMed  Google Scholar 

  25. Raff T, Germann G, Hartmann B. The value of early enteral nutrition in the prophylaxis of stress ulceration in the severely burned patient. Burns. 1997; 23:313.

    CAS  PubMed  Google Scholar 

  26. Raff T, Hartmann B, Germann G. Early intragastric feeding of seriously burned and long-term ventilated patients: a review of 55 patients. Burns. 1997;23:19.

    CAS  PubMed  Google Scholar 

  27. Esparza J, Boivin MA, Hartshorne MF, Boivin MA, Hartshorne MF, Levy H. Equal aspiration rates in gastrically and transpylorically fed critically ill patients. Intensive Care Med. 2001;27:660–4.

    CAS  PubMed  Google Scholar 

  28. Hauschild TB, Fu KY, Hipwell RC, Baraghoshi G, Mone MC, Nirula MC, Nirula R, Kimball EJ, Barton RG. Safe, timely, convenient, and cost-effective: a single-center experience with bedside placement of enteral feeding tubes by midlevel providers using fluoroscopic guidance. Am J Surg. 2012;204(6): 958–62.

    PubMed  Google Scholar 

  29. Jenkins ME, Gottschlich MM, Warden GD. Enteral feeding during operative procedures in thermal injuries. J Burn Care Rehabil. 1994;15:199.

    CAS  PubMed  Google Scholar 

  30. Mayes T, Gottschlich MM, Warden GD. Nutrition intervention in pediatric patients with thermal injuries who require laparotomy. J Burn Care Rehabil. 2000;21:451.

    CAS  PubMed  Google Scholar 

  31. Dylewksi ML, Baker M, Prelack K, Weber JM, Hursey D, Lydon M, Fagan SP, Sheridan RL. The safety and efficacy of parenteral nutrition among pediatric patients with burn injuries. Pediatr Crit Care Med. 2013;14(3):e120–5.

    PubMed  Google Scholar 

  32. Wolfe RR, Allsop JR, Burke JF. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism. 1979;28:210–20.

    CAS  PubMed  Google Scholar 

  33. Masters B, Aarabi S, Sidhwa F, Wood F. High-carbohydrate, high-protein, low-fat versus low-carbohydrate, high-protein, high-fat enteral feeds for burns. Cochrane Database Syst Rev 2012; 1. doi:10.1002/14651858.CD006122.pub3.

  34. Consensus recommendations from the U.S. summit on immune-enhancing enteral therapy. JPEN J Parenter Enteral Nutr 2001;25:S61–2.

    Google Scholar 

  35. Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012. doi:10.1155/2012/539426.

    PubMed Central  PubMed  Google Scholar 

  36. Gottschlich MM, Jenkins M, Warden GD, Baumer T, Havens P, Snook JT, Alexander JW. Differential effects of three enteral dietary regimens on selected outcome variables in burn patients. JPEN J Parenter Enteral Nutr. 1990;14:225–36.

    CAS  PubMed  Google Scholar 

  37. Saito H, Trocki O, Alexander JW, Kopcha R, Heyd T, Joffe SN. The effect of route of nutrient administration on the nutritional state, catabolic hormone secretion, and gut mucosal integrity after burn injury. JPEN J Parenter Enteral Nutr. 1987;11:1–7.

    CAS  PubMed  Google Scholar 

  38. Saffle J, Wiebke G, Jennings K, Morris SE, Barton RG. Randomized trial of immune-enhancing enteral nutrition in burn patients. J Trauma. 1997;42: 793–800.

    CAS  PubMed  Google Scholar 

  39. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, D’Elia M, Bernier J. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med. 2003;31:2444–9.

    CAS  PubMed  Google Scholar 

  40. Herndon DN. Nutritional and pharmacological support of the metabolic response to injury. Minerva Anestesiol. 2003;69:264.

    CAS  PubMed  Google Scholar 

  41. Demling RH, DeSanti L. Oxandrolone induced lean mass gain during recovery from severe burns is maintained after discontinuation of the anabolic steroid. Burns. 2003;29:793–7.

    PubMed  Google Scholar 

  42. Bulger EM, Jurkovich GJ, Farver CL, Klotz P, Maier RV. Oxandrolone does not improve outcome of ventilator dependent surgical patients. Ann Surg. 2004;240:472–80.

    PubMed Central  PubMed  Google Scholar 

  43. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236:814–22.

    PubMed Central  PubMed  Google Scholar 

  44. Rock CL, Dechert RE, Khilnani R, Parker RS, Rodriguez JL. Carotenoids and antioxidant vitamins in patients after burn injury. J Burn Care Rehabil. 1997;18:269–78.

    CAS  PubMed  Google Scholar 

  45. Gottschlich MM, Mayes T, Choury J, Warden GD. Hypovitaminosis D in acutely injured pediatric burn patients. J Am Diet Assoc. 2004;104:931–41.

    PubMed  Google Scholar 

  46. Berger MM, Cavadini C, Bart A, Mansourian R, Guinchard S, Bartholdi I, et al. Cutaneous copper and zinc losses in burns. Burns. 1992;18:373–80.

    CAS  PubMed  Google Scholar 

  47. Dylewski ML, Bender JC, Smith AM, Prelack K, Lydon M, Weber JM, Sheridan RL. The selenium status of pediatric patients with burn injuries. J Trauma. 2010;69:584–8.

    CAS  PubMed  Google Scholar 

  48. Traber MG, Leonard SW, Traber DL, Traber LD, Gallagher J, Bobe G, et al. Alpha tocopherol adipose tissue stores are depleted after burn injury in pediatric patients. Am J Clin Nutr. 2010;92:1378–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Cunningham J, Leffell M, Harmatz P. Burn severity, copper dose, and plasma ceruloplasmin in burned children during total parenteral nutrition. Nutrition. 1993;9:329–32.

    CAS  PubMed  Google Scholar 

  50. Gosling P, Rothe HM, Sheehan TM, Hubbard LD. Serum copper and zinc concentrations in patients with burns in relation to burn surface area. J Burn Care Rehabil. 1995;16:481–6.

    CAS  PubMed  Google Scholar 

  51. Khorasani G, Hosseinimehr SJ, Kaghazi Z. The alteration of plasma’s zinc and copper levels in patients with burn injuries and the relationship to the time after burn injuries. Singapore Med J. 2008;49: 627–30.

    CAS  PubMed  Google Scholar 

  52. Voruganti VS, Klein GL, Lu HX, et al. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns. 2005;31: 711–6.

    PubMed  Google Scholar 

  53. Berger MM. Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract. 2006;21:438–49.

    PubMed  Google Scholar 

  54. Graves C, Saffle J, Cochran A. Actual burn nutrition care practices: an update. J Burn Care Res. 2009;30: 77–82.

    PubMed  Google Scholar 

  55. McClave SA, Martindale RG, Vanek VW, et al. A.S.P.E.N. Board of Directors; American College of Critical Care Medicine; Society of Critical Care Medicine. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33:277–316.

    PubMed  Google Scholar 

  56. Cope O, Langohr J, Moore F, Webster RC. Expeditious care of full-thickness burn wounds by surgical excision and grafting. Ann Surg. 1947; 125:1–22.

    PubMed Central  Google Scholar 

  57. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10: 1103–8.

    CAS  PubMed  Google Scholar 

  58. Manafo W, Auelenbacher C, Papplardo C. Early tangential excision of the eschars of major burns. Arch Surg. 1972;104:503–7.

    Google Scholar 

  59. Burke J, Bondoc C, Quinby W. Primary burn excision and immediate grafting: a method for shortening illness. J Trauma. 1974;14:389–95.

    CAS  PubMed  Google Scholar 

  60. Burke J, Quinby W, Bondoc C. Primary excision and prompt grafting as routine therapy for the treatment of thermal burns in children. Surg Clin North Am. 1976;56:447–94.

    Google Scholar 

  61. Thompkins RG, Burke J, Schoenfeld DA, Bondoc CC, Quinby Jr WC, Behringer GC, Ackroyd FW. Prompt eschar excision: a treatment system contributing to reduced burn mortality. Ann Surg. 1986;204:272–81.

    Google Scholar 

  62. Thompkins RG, Remensnyder JP, Burke JF, Tompkins DM, Hilton JF, Schoenfeld DA, et al. Significant reductions in mortality for children with burn injuries through the use of prompt eschar excision. Ann Surg. 1988;208:577–85.

    Google Scholar 

  63. Deitch E, Clothier J. Burns in the elderly: an early surgical approach. J Trauma. 1983;23:891–4.

    CAS  PubMed  Google Scholar 

  64. Demling R. Effect of early burn excision and grafting on pulmonary function. J Trauma. 1984;24:830–4.

    CAS  PubMed  Google Scholar 

  65. Gray D, Pine R, Harner T, Marvin JA, Engrav LH, Heimbach DM. Early surgical excision versus conventional therapy in patients with 20 to 40 percent burns: a comparative study. Am J Surg. 1982;144: 76–80.

    CAS  PubMed  Google Scholar 

  66. Chicarilli ZN, Cuono CB, Heinrich JJ, Fichandler BC, Barese S. Selective aggressive burn excision for high mortality subgroups. J Trauma. 1986;26:18–25.

    CAS  PubMed  Google Scholar 

  67. Herndon D, Parks D. Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma. 1986;26:149–52.

    CAS  PubMed  Google Scholar 

  68. Yamamoto H, Silthram S, deSerres S, Hultman CS, Meyer AA. Immediate burn wound excision restores antibody synthesis to bacterial antigen. J Surg Res. 1996;63:157–62.

    CAS  PubMed  Google Scholar 

  69. Demling R, Lalonde C. Early burn excision attenuates the postburn lung and systemic response to endotoxin. Surgery. 1990;108:28–35.

    CAS  PubMed  Google Scholar 

  70. Drost A, Burleson D, Cioffi W, Jordan BS, Mason Jr AD, Pruitt Jr BA. Plasma cytokines following thermal injury and their relationship with patient mortality, burn size, and time postburn. J Trauma. 1993;35: 335–9.

    CAS  PubMed  Google Scholar 

  71. Salisbury R, Carnes R, Enterline D. Biological dressings and evaporative water loss from burn wounds. Ann Plast Surg. 1980;5:270.

    CAS  PubMed  Google Scholar 

  72. Childs C, Little RA. Acute changes in oxygen consumption and body temperature after burn injury. Arch Dis Child. 1994;71:31.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Gore DC, Chinkes D, Sanford A, Hart DW, Wolf SE, Herndon DN. Influence of fever on the hypermetabolic response in burn-injured children. Arch Surg. 2003;138:169.

    PubMed  Google Scholar 

  74. Parish RA, Novack AH, Heimbach DM, Engrav LR. Fever as a predictor of infection in burned children. J Trauma. 1987;27:69.

    CAS  PubMed  Google Scholar 

  75. Greenhalgh DG, Saffle JR, Holmes 4th JH, Gamelli RL, Palmieri TL, Horton JW, et al. American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res. 2007;28(6): 776–90.

    PubMed  Google Scholar 

  76. Wilmore DW, Long JM, Mason Jr AD, Skreen RW, Pruitt Jr BA. Catecholamines: mediator of the 270 hypermetabolic response to thermal injury. Ann Surg. 1974;180:653–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Goodall M, Stone C, Haynes Jr BW. Urinary output of adrenaline and noradrenaline in severe 272 thermal burns. Ann Surg. 1957;145:479–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Iss. 2004;15: 45–62.

    Google Scholar 

  79. Wolfe RR, Herndon DN, Peters EJ, Peters EJ, Jahoor F, Desai MH, Holland OB. Regulation of lipolysis in severely burned children. Ann Surg. 1987;206: 214–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Arbabi S, Ahrns KS, Wahl WL, Hemmila MR, Wang SC, Brandt MM, Taheri PA. Beta-blocker use is associated with improved outcomes in adult burn patients. J Trauma. 2004;56:265–9.

    CAS  PubMed  Google Scholar 

  81. Herndon DN, Barrow RE, Rutan TC, Minifee P, Jahoor F, Wolfe RR. Effect of propranolol administration on hemodynamic and metabolic responses of burned pediatric patients. Ann Surg. 1988;208:484–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17): 1223–9.

    CAS  PubMed  Google Scholar 

  83. Herndon DN, Nguyen TT, Wolfe RR, Maggi SP, Biolo G, Muller M, Barrow RE. Lipolysis in burned patients is stimulated by the beta 2-receptor for catecholamines. Arch Surg. 1994;129:1301–4.

    CAS  PubMed  Google Scholar 

  84. Jeschke MG, Finnerty CC, Suman OE, Kulp G, Mlcak RP, Herndon DN. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246:351–60.

    PubMed Central  PubMed  Google Scholar 

  85. Aarsland A, Chinkes D, Wolfe RR, Barrow RE, Nelson SO, Pierre E, Herndon DN. Beta-blockade lowers peripheral lipolysis in burn patients receiving growth hormone: rate of hepatic very low density lipoprotein triglyceride secretion remains unchanged. Ann Surg. 1996;223(6):777–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Barret JP, Jeschke MG, Herndon DN. Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma. 2001;51(4):736–9.

    CAS  PubMed  Google Scholar 

  87. Gore DC, Honeycutt D, Jahoor F, et al. Propranolol diminishing extremity blood flow in burned patients. Ann Surg. 1991;213(6):568–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Morio B, Irtun O, Herndon DN, Wolfe RR. Propranolol decreases splanchnic triacylglycerol storage in burn patients receiving a high-carbohydrate diet. Ann Surg. 2002;236(2):218–25.

    PubMed Central  PubMed  Google Scholar 

  89. Karim A, Ranney RE, Zagarella J, Maibach HI. Oxandrolone disposition and metabolism in man. Clin Pharmacol Ther. 1973;14:862–9.

    CAS  PubMed  Google Scholar 

  90. Orr R, Fiatarone SM. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety. Drugs. 2004;64:725–50.

    CAS  PubMed  Google Scholar 

  91. Barrow RE, Dasu MR, Ferrando AA, Spies M, Thomas SJ, Perez-Polo JR, Herndon DN. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. Ann Surg. 2003;237:422–8.

    PubMed Central  PubMed  Google Scholar 

  92. Demling RH. Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns. 1999;25:215–21.

    CAS  PubMed  Google Scholar 

  93. Hart DW, Wolf SE, Ramzy PI, Chinkes DL, Beauford RB, Ferrando AA, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg. 2001;233:556–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Wolf SE, Edelman LS, Kemalyan N, Donison L, Cross J, Underwood M, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27:131–9.

    PubMed  Google Scholar 

  95. Wolf SE, Thomas SJ, Dasu MR, Ferrando AA, Chinkes DL, Wolfe R, Herndon DN. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg. 2003;237:801–10.

    PubMed Central  PubMed  Google Scholar 

  96. Cochran A, Thuet W, Holt B, Faraklas I, Smout RJ, Horn SD. The impact of oxandrolone on length of stay following major burn injury: a clinical practice evaluation. Burns. 2013;39(7):1374–9.

    PubMed  Google Scholar 

  97. Porro LJ, Herndon DN, Rodriguez NA, Jennings K, Klein GL, Mlcak RP, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214:489–504.

    PubMed Central  PubMed  Google Scholar 

  98. Pham TN, Klein MB, Gibran NS, Arnoldo BN, Gamelli RL, Silver GM. Impact of oxandrolone treatment on acute outcomes after severe burn injury. J Burn Care Res. 2008;29:902–6.

    PubMed Central  PubMed  Google Scholar 

  99. Demling RH, DeSanti L. The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns. 2001;17:46–51.

    Google Scholar 

  100. Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, Mesotten D. Clinical Review: Intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;94:3163.

    PubMed  Google Scholar 

  101. Pidcoke HF, Wanek SM, Rohleder LS. Glucose variability is associated with high mortality after severe burn. J Trauma. 2009;67:990.

    PubMed  Google Scholar 

  102. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51:540.

    CAS  PubMed  Google Scholar 

  103. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359.

    PubMed  Google Scholar 

  104. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180:821.

    PubMed Central  PubMed  Google Scholar 

  105. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283.

    PubMed  Google Scholar 

  106. Biolo G, Zorat F, Antonione R, Ciocchio B. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005;37:2169–79.

    CAS  PubMed  Google Scholar 

  107. Oudemans-van Straaten HM, Bosman RJ, Treskas M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27:84–90.

    CAS  PubMed  Google Scholar 

  108. Griffiths RD, Jones C, Palmer TEA. Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition. 1997; 4:296–302.

    Google Scholar 

  109. Griffiths RD, Allen KD, Andrews FJ, Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002;18:546–52.

    CAS  PubMed  Google Scholar 

  110. Lin JJ, Chung XJ, Yang CY, Lau HL. A meta-analysis of trials using the intention to treat principle for glutamine supplementation in critically ill patients with burn. Burns. 2013;39:565–70.

    PubMed  Google Scholar 

  111. Zhou YP, Jiang ZM, Sun YH, Wang XR, Ma EL, Wilmore D. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr. 2003;27:241–5.

    CAS  PubMed  Google Scholar 

  112. Peng X, Yan H, You Z, Wang S. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns. 2004;30:135–9.

    PubMed  Google Scholar 

  113. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, et al. Efficacy of recombinant human erythropoietin in critically ill patients a randomized controlled trial. JAMA. 2002;288:2827–35.

    CAS  PubMed  Google Scholar 

  114. Tobalem M, Harder Y, Rezaeian F, Wettstein R. Secondary burn progression decreased by erythropoietin. Crit Care Med. 2013;41:963–71.

    CAS  PubMed  Google Scholar 

  115. Kamolz LP, Smolle-Juettner F, Parvizi D. The use of erythropoietin in burns: sometimes good, sometimes not? Crit Care Med. 2013;41:1138–9.

    PubMed  Google Scholar 

  116. Sherman AR, Barkley M. Nutrition and wound healing. J Wound Care. 2011;20(357–8):360,362–367.

    Google Scholar 

  117. Stechmiller JK. Understanding the role of nutrition and wound healing. Nutr Clin Pract. 2010;25:61–8.

    PubMed  Google Scholar 

  118. Sanchez-Agreda M, Cimorra GA, Mariona M, Garcia-Jolón. Trace elements in burned patients: studies of zinc, copper and iron contents in serum. Burns. 1977;4:28–31.

    Google Scholar 

  119. Belmonte JA, Ibanez L, Ras MR, Aulesa C, Vinzo J, Iglesias J, Carol J. Iron metabolism in burned children. Eur J Pediatr. 1999;158:556–9.

    CAS  PubMed  Google Scholar 

  120. Cynober L, Prugnaud O, Lioret N, Duchemin C, Saizy R, Giboudeau J. Serum transthyretin levels in patients with burn injury. Surgery. 1991;109:640–4.

    CAS  PubMed  Google Scholar 

  121. Gottschlich MM, Baumer T, Jenkins M, Khoury J, Warden GD. The prognostic value of nutritional and inflammatory indices in patients with burns. J Burn Care Rehabil. 1992;13:105–13.

    CAS  PubMed  Google Scholar 

  122. Carlson DE, Cioffi Jr WG, Mason Jr AD, McManus WF, Pruitt Jr BA. Evaluation of serum visceral protein levels as indicators of nitrogen balance in thermally injured patients. JPEN J Parenter Enteral Nutr. 1991;15:440–4.

    CAS  PubMed  Google Scholar 

  123. Rettmer RL, Williamson JC, Labbe RF, Heimbach DM. Laboratory monitoring of nutritional status in burn patients. Clin Chem. 1992;38:334–7.

    CAS  PubMed  Google Scholar 

  124. Yang HT, Yim J, Cho YS, Kim D, Hur J, Kim JH, et al. Serum transthyretin level is associated with clinical severity rather than nutritional status in massively burned patients. JPEN J Parenter Enteral Nutr. 2013. doi:10.1177/0148607113499588.

    Google Scholar 

  125. Sheridan RL, Prelack K, Cunningham JJ. Physiologic hypoalbuminemia is well tolerated by severely burned children. J Trauma. 1997;43:448.

    CAS  PubMed  Google Scholar 

  126. Perez-Guisado J, de Haro-Padilla JM, Rioja LF, Derosier LC, de la Torre JI. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition. Int J Burn Trauma. 2013;3(3):159–63.

    CAS  Google Scholar 

  127. Greenhalgh DG, Housinger TA, Kagan RJ, Rieman M, James L, Novak S, et al. Maintenance of serum albumin levels in pediatric burn patients: a prospective, randomized trial. J Trauma. 1995;39:67.

    CAS  PubMed  Google Scholar 

  128. Cartotto R, Callum J. A review of the use of human albumin in burn patients. J Burn Care Res. 2012;33(6):702–17.

    PubMed  Google Scholar 

  129. Kim H, Stotts NA, Froelicher ES, Engler MM, Porter C. Why patients in critical care do not receive adequate enteral nutrition? A review of the literature. J Crit Care. 2012;27(6):702–13.

    PubMed  Google Scholar 

  130. Lee JO, Gauglitz GC, Herndon DN, Hawkins HK, Halder SC, Jeschke MG. Association between dietary fat content and outcomes in pediatric burn patients. J Surg Res. 2011;166(1):e83–90.

    PubMed Central  PubMed  Google Scholar 

  131. Demling RH. The incidence and impact of pre-existing protein energy malnutrition on outcome in the elderly burn patient population. J Burn Care Rehabil. 2005;26:94.

    PubMed  Google Scholar 

  132. Bell CL, Tamura BK, Masaki KH, Amella EJ. Prevalence and measures of nutritional compromise among nursing home patients: weight loss, low body mass index, malnutrition, and feeding dependency, a systematic review of the literature. J Am Med Dir Assoc. 2013;14(2):94–100.

    PubMed  Google Scholar 

  133. Coen JR, Carpenter AM, Shupp JW, Matt SE, Shaw JD, Flanagan KE, et al. The results of a national survey regarding nutritional care of obese burn patients. J Burn Care Res. 2011;32:561–5.

    PubMed  Google Scholar 

  134. McClave SA, Kushner R, Van Way CW, Cave M, DeLegge M, Dibaise J, et al. Nutrition therapy of the severely obese, critically ill patient: summation of conclusions and recommendations. JPEN J Parenter Enteral Nutr. 2011;35:88S–96S.

    PubMed  Google Scholar 

  135. Joffe A, Wood K. Obesity in critical care. Curr Opin Anaesthesiol. 2007;20(2):113–8.

    PubMed  Google Scholar 

  136. Port AM, Apovian C. Metabolic support of the obese intensive care unit patient: a current perspective. Curr Opin Clin Nutr Metab Care. 2010;13: 184–91.

    PubMed Central  PubMed  Google Scholar 

  137. Schweiger C, Weiss R, Berry E, Kaidar A. Nutritional deficiencies in bariatric surgery candidates. Obes Surg. 2010;20(2):193–7.

    PubMed  Google Scholar 

  138. Kazemi A, Frazier T, Crave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep. 2010;12(4):288–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mosier MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mosier, M.J., Gamelli, R.L. (2014). Burns. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1121-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1121-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1120-2

  • Online ISBN: 978-1-4939-1121-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics