Skip to main content

Collection, Processing, and Banking of Umbilical Cord Blood

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

The blood in the umbilical cord and placenta after the birth of a child is comparable to bone marrow for use in hematopoietic stem cell transplantation and offered a number of advantages. In the past 20 years, more than 30,000 cord blood transplants have been performed worldwide. Stem cell transplantation for hematological malignancies and genetic disorders however, is an uncommon occurrence. Research performed by several independent laboratories has demonstrated that cord blood also contains a mixture of pluripotent stem cells capable of giving rise to cells derived from the endodermal, mesodermal, and ectodermal lineages. Thus, CB is a readily available stem cell source for use in tissue engineering and regenerative medicine applications, which are hypothesized to be more frequent events than the need for hematopoietic stem cell transplant. This chapter will review the methodologies for collection, processing, and banking these cells for these future clinical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broxmeyer HE, Gluckman E, Auerbach A, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;8 Suppl 1:76–91.

    Article  PubMed  Google Scholar 

  2. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.

    Article  CAS  PubMed  Google Scholar 

  3. Gluckman E. Stem cell harvesting from cord blood: A new perspective. In: Wunder HA, editor. Peripheral blood stem cell autographs. New York: Springer; 1990.

    Google Scholar 

  4. Broxmeyer HA, Kurtzberg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation: An expanded role for cord blood transplantation. Blood Cells. 1991;17(2):330–7.

    Google Scholar 

  5. Broxmeyer HE, Kurtzberg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells. 1991;17(2):313–29.

    CAS  PubMed  Google Scholar 

  6. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86(10):3828–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Vilmer E, Sterkers G, Rahimy C, et al. HLA-mismatched cord-blood transplantation in a patient with advanced leukemia. Transplantation. 1992;53(5):1155–7.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner JE, Kernan NA, Steinbuch M, et al. Allogeneic sibling umbilical cord blood transplantation in children with malignant and nonmalignant disease. Lancet. 1995;346:214–19.

    Article  CAS  PubMed  Google Scholar 

  9. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Harris DT, Schumacher MJ, LoCascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci U S A. 1992;89:10006–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Harris DT, Schumacher MJ, LoCascio J, et al. Immunoreactivity of umbilical cord blood and post-partum maternal peripheral blood with regard to HLA-haploidentical transplantation. Bone Marrow Transplant. 1994;14:63–8.

    CAS  PubMed  Google Scholar 

  12. Harris DT, LoCascio J, Besencon FJ. Analysis of the alloreactive capacity of human umbilical cord blood: implications for graft versus-host disease. Bone Marrow Transplant. 1994;14:545–53.

    CAS  PubMed  Google Scholar 

  13. Harris DT. In vitro and in vivo assessment of the graft-versus-leukemia activity of cord blood. Bone Marrow Transplant. 1995;15:17–23.

    CAS  PubMed  Google Scholar 

  14. Harris DT. GVL and GVHD implications of cord blood. Proceedings of the international conference/workshop on cord blood transplantation and biology/immunology. Blood Cells. 1994;20:560–5.

    CAS  PubMed  Google Scholar 

  15. Harris DT, Schumacher MJ, Rychlik S, et al. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant. 1994;13:135–43.

    CAS  PubMed  Google Scholar 

  16. Harris DT. What every physician needs to know about cord blood banking. Round-Up (Maricopa County Medical Society News). Dec 1994.

    Google Scholar 

  17. Harris DT. Experience in autologous and allogeneic cord blood banking. J Hematother. 1996;5(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  18. Harris DT. Cord blood banking for transplantation. Can J Clin Med. 1997;4:1–8.

    Google Scholar 

  19. Harris DT. Cord blood banking. The University of Arizona experience: successes, problems and cautions. Cancer Res Ther Control. 1998;7:63–7.

    Google Scholar 

  20. Choudhery MC, Badowski M, Muise A, et al. Utility of cryopreserved umbilical cord tissue for regenerative medicine. Curr Stem Cell Res Ther. 2013;8(5):370–80.

    Article  CAS  PubMed  Google Scholar 

  21. McGuckin C, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245–55.

    Article  CAS  PubMed  Google Scholar 

  22. McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res. 2004;295:350–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rogers I, Yamanaka N, Bielecki R, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kucia M, Halasa M, Wysoczynski M, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human umbilical cord blood-preliminary report. Leukemia. 2007;21:297–303.

    Article  CAS  PubMed  Google Scholar 

  25. Harris DT, He X, Badowski M, Nichols JC. Regenerative medicine of the eye: a short review. In: Levicar N, Habib NA, Dimarakis I, Gordon MY, editors. Stem cell repair & regeneration, vol. 3. London: Imperial College Press; 2008. p. 211–25.

    Chapter  Google Scholar 

  26. Sunkomat JNE, Goldman S, Harris DT. Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. J Mol Cell Cardiol. 2007; 42(6)Suppl 1:S97.

    Google Scholar 

  27. Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of the regenerative potential of human adipose and cord tissue derived mesenchymal stem cells. Cytotherapy. 2013;15:330–43.

    Article  CAS  PubMed  Google Scholar 

  28. Perry D. Patient’s voices: the powerful sound in the stem cell debate. Science. 2000;287:1423.

    Article  CAS  PubMed  Google Scholar 

  29. Harris DT. Non-Haematological Uses of Cord Blood Stem Cells. Br J Haematol. 2009;147:177–84.

    Article  PubMed  Google Scholar 

  30. Theilgaard-Monch K, Raaschou-Jensen K, Palm H, et al. Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplant. 2001;28:1073–82.

    Article  CAS  PubMed  Google Scholar 

  31. Gluckman E, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7:219–27.

    Article  CAS  PubMed  Google Scholar 

  32. Willing AE, Eve DJ, Sanberg PR. Umbilical cord blood transfusions for prevention of progressive brain injury and induction of neural recovery: an immunological perspective. Regen Med. 2007;2:457–64.

    Article  PubMed  Google Scholar 

  33. Newcomb JD, Sanberg PR, Klasko SK, Willing AE. Umbilical cord blood research: current and future perspectives. Cell Transplant. 2007;16:151–8.

    PubMed Central  PubMed  Google Scholar 

  34. Ueda T, Yoshida M, Yoshino H, et al. Hematopoietic capability of CD34+ cord blood cells: a comparison with CD34+ adult bone marrow cells. Int J Hematol. 2001;73:457–62.

    Article  CAS  PubMed  Google Scholar 

  35. van de Ven C, Collins D, Bradley MB, et al. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol. 2007;35:1753–65.

    Article  PubMed  Google Scholar 

  36. Schuller CE, Jankowski K, Mackenzie K. Telomere length of cord blood-derived CD34(+) progenitors predicts erythroid proliferative potential. Leukemia. 2007;21:983–91.

    CAS  PubMed  Google Scholar 

  37. Kielpinski G, Prinzi S, Duguid J, du Moulin G. Roadmap to approval: use of an automated sterility test method as a lot release test for Carticel, autologous cultured chondrocytes. Cytotherapy. 2005;7(6):531–41.

    Article  CAS  PubMed  Google Scholar 

  38. Badowski MS, Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for transplantation and regenerative medicine. In: Singh SR, editor. Somatic stem cells: methods and protocols, methods in molecular biology, vol. 879. New York: Springer; 2011. p. 279–90.

    Chapter  Google Scholar 

  39. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood. 1993;81:1679–90.

    CAS  PubMed  Google Scholar 

  40. Papassavas AC, Goika V, Chatzistamatiou T, et al. A strategy of splitting individual high volume cord blood units into two half subunits prior to processing increases the recovery of cells and facilitates ex vivo expansion of the infused hematopoietic progenitor cells in adults. Int J Lab Hematol. 2008;30(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  41. Harris DT, McGaffey AP, Schwarz RH, et al. Comparing the mononuclear cell (MNC) recovery of AXP and Hespan. Obstet Gynecol. 2007;109(4):93S.

    Google Scholar 

  42. AABB. Standards for cellular therapy product services. 5th ed. Bethesda: AABB Press; 2012.

    Google Scholar 

  43. Lane TA, Plunkett M, Buenviaje J, Law P, et al. Recovery of leukocytes in cord blood units after cryopreservation by controlled rate freeze in DMSO and storage in vapor phase liquid nitrogen. In: Poster, ISCT conference, 2002.

    Google Scholar 

  44. Broxmeyer HE, Lee MR, Hangoc G, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117(18):4773–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Harris DT, Mapother M, Goodman C. Prevention of cross-sample and infectious contamination during cord blood banking by use of cryovials for storage in liquid nitrogen. Transfusion. 2000;40(10S):111S.

    Google Scholar 

  46. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565–77.

    Article  CAS  PubMed  Google Scholar 

  47. Lindenmair A, Hatlapatka T, Kollwig G, et al. Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells. 2012;1:1061–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Xue G, He M, Zhao J, et al. Intravenous umbilical cord mesenchymal stem cell infusion for the treatment of combined malnutrition nonunion of the humerus and radial nerve injury. Regen Med. 2011;6:733–41.

    Article  PubMed  Google Scholar 

  49. Wu KH, Chan CK, Tsai C, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation. 2011;91(12):1412–16.

    Article  PubMed  Google Scholar 

  50. Liang J, Zhang H, Hua B, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler. 2009;15(5):644–6.

    Article  CAS  PubMed  Google Scholar 

  51. Lian J, Gu F, Wang H, et al. Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol. 2010;6(8):486–9.

    Article  Google Scholar 

  52. Reza HM, Ng B-Y, Gimeno FL, Phan TT, Ang LP-K. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev. 2011;7:935–47.

    Article  PubMed  Google Scholar 

  53. Gonzalo-Daganzo R, Regidor C, Martin-Donaire T, et al. Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy. 2009;11(3):278–88.

    Article  CAS  PubMed  Google Scholar 

  54. Burt RK, Loh Y, Pearce W, et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA. 2008;299:925–36.

    Article  CAS  PubMed  Google Scholar 

  55. Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301–9.

    Article  CAS  PubMed  Google Scholar 

  56. Harris DT, Badowski M, Ahmad N, Gaballa MA. The potential of cord blood stem cells for use in regenerative medicine. Expert Opin Biol Ther. 2007;7:1311–22.

    Article  CAS  PubMed  Google Scholar 

  57. Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ende N, Chen R, Mack R. NOD/LtJ type I diabetes in mice and the effect of stem cells (Berashis) derived from human umbilical cord blood. J Med. 2002;33:181–7.

    PubMed  Google Scholar 

  59. Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun. 2004;325:665–9.

    Article  CAS  PubMed  Google Scholar 

  60. Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11:275–81.

    PubMed  Google Scholar 

  61. Meier C, Middelanis J, Wasielewski B, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59:244–9.

    Article  PubMed  Google Scholar 

  62. Wu KH, Zhou B, Yu CT, et al. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann Thorac Surg. 2007;83:1491–8.

    Article  PubMed  Google Scholar 

  63. www.clinicaltrials.gov.

    Google Scholar 

  64. Oran B, Shpall E. Umbilical cord blood transplantation: a maturing technology. Hematology Am Soc Hematol Educ Program. 2012;2012:215–22.

    PubMed  Google Scholar 

  65. Liao Y, Cotton M, Tan S, Kurtzberg J, Cairo MS. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant. 2012;48(7):890–900.

    Article  PubMed  Google Scholar 

  66. Min K, Song J, Kang JY, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the invaluable technical assistance obtained from all of the Cord Blood Bank personnel that have made this review possible. I would also like to acknowledge the numerous physicians, midwifes, and nurses that have participated in the collection of the cord blood and tissue units. In addition, the author gratefully acknowledges the assistance of Katherine S. Brown and Heather Brown at Cord Blood Registry in the preparation of this manuscript.

Conflict of Interest 

The author is a consultant to CBR Systems, Inc. and Chief Science Officer for Adicyte, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Harris Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, D.T. (2014). Collection, Processing, and Banking of Umbilical Cord Blood. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_24

Download citation

Publish with us

Policies and ethics