Skip to main content

Bladder Reconstruction Using Amniotic Mesenchymal Stem Cells

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Regenerative medicine of functional urinary tracts has been vigorously investigated to provide effective treatments for severe and/or irreversibly injured tissues. We attempt to construct regenerative medicine based on tissue engineering methods. We have two strategies: the development of biomaterials and the establishment of effective cell sources. In this chapter, we indicate that human amniotic membranes (hAM) have a potential to provide great hope for reconstruction of functional urinary bladders. The hAM can be used as biomaterials to enlarge urinary bladder capacity and increase compliance. Furthermore, the hAM is composed of mesenchymal stem cells that have ability to differentiate into various kinds of cells. The human amniotic mesenchymal stem cells (hAMSCs) are one of the cell sources to form urinary bladder tissues. We show that the hAMSCs implanted into the frozen-injured bladders differentiate into smooth muscle cells. The reconstructed urinary bladders, composed of the hAMSCs-derived smooth muscles, show contractile responses to potassium and carbachol. The hAMSCs can recover functional urinary bladders. Therefore, hAMSCs will be a great cell source for reconstruction of functional urinary tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ES:

Embryonic stem

hAM:

Human amniotic membranes

hAMSCs:

Human amniotic mesenchymal stem cells

HuNu:

Mouse anti-human nuclei monoclonal antibody

MSCs:

Mesenchymal stem cells

PBS:

Phosphate buffer saline

References

  1. Pike JG, Berardinucci G, Hamburger B, Kiruluta G. The surgical management of urinary incontinence in myelodysplastic children. J Pediatr Surg. 1991;26(4):466–70; discussion 470–461.

    Article  CAS  PubMed  Google Scholar 

  2. Morales PA, Ong G, Askari S, Hotchkiss RS. Sigmoidocystoplasty for the contracted bladder. J Urol. 1958;80(6):455–60.

    CAS  PubMed  Google Scholar 

  3. Tammela TL, Lindell OI, Viitanen JK, Hellstrom PA, Kontturi MJ, Lukkarinen OA. Functional and urodynamic characteristics of bladder substitution with detubularised right colonic segment. Br J Urol. 1991;67(3):298–302.

    Article  CAS  PubMed  Google Scholar 

  4. Goldwasser B, Barrett DM, Webster GD, Kramer SA. Cystometric properties of ileum and right colon after bladder augmentation, substitution or replacement. J Urol. 1987;138(4 Pt 2):1007–8.

    CAS  PubMed  Google Scholar 

  5. McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol. 1992;147(5):1199–208.

    CAS  PubMed  Google Scholar 

  6. Palmer LS, Franco I, Kogan SJ, Reda E, Gill B, Levitt SB. Urolithiasis in children following augmentation cystoplasty. J Urol. 1993;150(2 Pt 2):726–9.

    CAS  PubMed  Google Scholar 

  7. Bauer SB, Hendren WH, Kozakewich H, et al. Perforation of the augmented bladder. J Urol. 1992;148(2 Pt 2):699–703.

    CAS  PubMed  Google Scholar 

  8. Fernandez-Arjona M, Herrero L, Romero JC, Nieto S, Martin R, Pereira I. Synchronous signet ring cell carcinoma and squamous cell carcinoma arising in an augmented ileocystoplasty. Case report and review of the literature. Eur Urol. 1996;29(1):125–8.

    CAS  PubMed  Google Scholar 

  9. Lakshmanan Y, Frimberger D, Gearhart JD, Gearhart JP. Human embryoid body-derived stem cells in co-culture with bladder smooth muscle and urothelium. Urology. 2005;65(4):821–6.

    Article  PubMed  Google Scholar 

  10. Frimberger D, Morales N, Shamblott M, Gearhart JD, Gearhart JP, Lakshmanan Y. Human embryoid body-derived stem cells in bladder regeneration using rodent model. Urology. 2005;65(4):827–32.

    Article  PubMed  Google Scholar 

  11. Kinebuchi Y, Johkura K, Sasaki K, Imamura T, Mimura Y, Nishizawa O. Direct induction of layered tissues from mouse embryonic stem cells: potential for differentiation into urinary tract tissue. Cell Tissue Res. 2008;331(3):605–15.

    Article  CAS  PubMed  Google Scholar 

  12. Becker C, Jakse G. Stem cells for regeneration of urological structures. Eur Urol. 2007;51(5):1217–28.

    Article  PubMed  Google Scholar 

  13. Chung SY, Krivorov NP, Rausei V, et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol. 2005;174(1):353–9.

    Article  PubMed  Google Scholar 

  14. Ringden O, Uzunel M, Sundberg B, et al. Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia. 2007;21(11):2271–6.

    Article  CAS  PubMed  Google Scholar 

  15. Tian H, Bharadwaj S, Liu Y, et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials. 2010;31(5): 870–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007;177(1):369–76.

    Article  PubMed  Google Scholar 

  17. Imamura T, Kinebuchi Y, Ishizuka O, Seki S, Igawa Y, Nishizawa O. Implanted mouse bone marrow-derived cells reconstruct layered smooth muscle structures in injured urinary bladders. Cell Transplant. 2008;17(3):267–78.

    Article  PubMed  Google Scholar 

  18. Imamura T, Ishizuka O, Lei Z, et al. Bone marrow-derived cells implanted into radiation-injured urinary bladders reconstruct functional bladder tissues in rats. Tissue Eng Part A. 2012;18(15–16): 1698–709.

    Article  CAS  PubMed  Google Scholar 

  19. Marra KG, Brayfield CA, Rubin JP. Adipose stem cell differentiation into smooth muscle cells. Methods Mol Biol. 2011;702: 261–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu WD, Xu YM, Feng C, Fu Q, Song LJ, Cui L. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J Urol. 2010;28(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  21. Jack GS, Almeida FG, Zhang R, Alfonso ZC, Zuk PA, Rodriguez LV. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J Urol. 2005;174(5):2041–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma AK, Fuller NJ, Sullivan RR, et al. Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. J Urol. 2009;182(4 Suppl):1898–905.

    Article  PubMed  Google Scholar 

  23. Drewa T. Using hair-follicle stem cells for urinary bladder-wall regeneration. Regen Med. 2008;3(6):939–44.

    Article  PubMed  Google Scholar 

  24. Zhang Y, McNeill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5): 2226–33.

    Article  CAS  PubMed  Google Scholar 

  25. Bourne GL. The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol. 1960;79:1070–3.

    CAS  PubMed  Google Scholar 

  26. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–5.

    Article  CAS  PubMed  Google Scholar 

  27. Rooney IA, Morgan BP. Characterization of the membrane attack complex inhibitory protein CD59 antigen on human amniotic cells and in amniotic fluid. Immunology. 1992;76(4):541–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Rebmann V, Pfeiffer K, Passler M, et al. Detection of soluble HLA-G molecules in plasma and amniotic fluid. Tissue Antigens. 1999;53(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  29. Thomson PD, Parks DH. Monitoring, banking, and clinical use of amnion as a burn wound dressing. Ann Plast Surg. 1981;7(5):354–6.

    Article  CAS  PubMed  Google Scholar 

  30. Sawhney CP. Amniotic membrane as a biological dressing in the management of burns. Burns. 1989;15(5):339–42.

    Article  CAS  PubMed  Google Scholar 

  31. Trelford-Sauder M, Trelford JD, Matolo NM. Replacement of the peritoneum with amnion following pelvic exenteration. Surg Gynecol Obstet. 1977;145(5):699–701.

    CAS  PubMed  Google Scholar 

  32. Kim JC, Tseng SC. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995;14(5):473–84.

    Article  CAS  PubMed  Google Scholar 

  33. Shimazaki J, Yang HY, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology. 1997;104(12):2068–76.

    Article  CAS  PubMed  Google Scholar 

  34. Fishman IJ, Flores FN, Scott FB, Spjut HJ, Morrow B. Use of fresh placental membranes for bladder reconstruction. J Urol. 1987; 138(5):1291–4.

    CAS  PubMed  Google Scholar 

  35. Norris MA, Cohen MS, Warren MM, Becker SN, Baur Jr PS, Seybold HM. Bladder reconstruction in rabbits with glutaraldehyde-stabilized amniotic membranes. Urology. 1982;19(6):631–5.

    Article  CAS  PubMed  Google Scholar 

  36. Iijima K, Igawa Y, Imamura T, et al. Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue Eng. 2007;13(3):513–24.

    Article  CAS  PubMed  Google Scholar 

  37. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004; 19(6):1450–6.

    Article  PubMed  Google Scholar 

  38. Wei JP, Nawata M, Wakitani S, et al. Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells. 2009;11(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  39. Wei JP, Zhang TS, Kawa S, et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant. 2003;12(5):545–52.

    PubMed  Google Scholar 

  40. Pan HC, Yang DY, Chiu YT, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neuroscia. 2006;13(5):570–5.

    Article  Google Scholar 

  41. Yu SJ, Soncini M, Kaneko Y, Hess DC, Parolini O, Borlongan CV. Amnion: a potent graft source for cell therapy in stroke. Cell Transplant. 2009;18(2):111–8.

    Article  PubMed  Google Scholar 

  42. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  43. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct. 2004;29(3):73–84.

    Article  CAS  PubMed  Google Scholar 

  44. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod. 2003;18(7):1489–93.

    Article  PubMed  Google Scholar 

  45. Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  46. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105(3):215–28.

    Article  CAS  PubMed  Google Scholar 

  47. Parolini O, Soncini M, Evangelista M, Schmidt D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med. 2009;4(2):275–91.

    Article  CAS  PubMed  Google Scholar 

  48. Minagawa T, Imamura T, Igawa Y, Aizawa N, Ishizuka O, Nishizawa O. Differentiation of smooth muscle cells from human amniotic mesenchymal cells implanted in the freeze-injured mouse urinary bladder. Eur Urol. 2010;58(2):299–306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Minagawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minagawa, T., Imamura, T., Ishizuka, O., Nishizawa, O. (2014). Bladder Reconstruction Using Amniotic Mesenchymal Stem Cells. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_18

Download citation

Publish with us

Policies and ethics