Skip to main content

Which Numbers Simplify Your Problem?

  • Chapter
  • First Online:
  • 1678 Accesses

Abstract

An extension of the ring of scalar quantities, from the usual field of real numbers to a non-Archimedean, sometimes permits to simplify some problems which, at a first sight, may seem not correlated with infinitesimal and infinite numbers. We present four simple cases, each one at the level of possibility for the creativity of a motivated student. The ring of Fermat reals and its applications to physics and differential geometry, the ring of Colombeau generalized numbers and its applications to the foundations of generalized functions, the Levi-Civita field and the derivation of complicated computer functions and the Surreals numbers as a universal non-Archimedean ring. The definition of each one of these rings is strongly motivated at elementary level and some open problems and ideas are introduced in the first two cases.

The author has been supported by FWF grants M1247-N13 and P25116-N25.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The notation with square brackets \(x[q]\) permits to avoid confusion when one consider functions defined on the LCF \(\mathcal{R}\).

  2. 2.

    Really, the same field of numbers has been predate by [14] (in Spanish) and [36] (in German).

  3. 3.

    That is \(L_{x}<R_{x}\) and \(L_{y}<R_{y}\). Let us note that using a notation like \(x=\{L_{x}\,|\, R_{x}\}\) we do not mean that a number \(x\in{\bf No}\) uniquely determines the subsets L x and R x .

  4. 4.

    Of course, at this stage of development and using this not-strictly formal point of view, our use of the notion of “simplicity” is only informal and it is natural to ask for a more formal definition, considering, moreover, its uniqueness. This will be done in the next section.

  5. 5.

    From this point of view the name “surreal numbers” is less meaningful than the original Conway’s “numbers” without any adjective.

References

  1. Albeverio, S., Fenstad, J.E., Hø egh-Krohn, R., Lindstrø m, T.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Pure and applied mathematics, 2nd ed. Academic Press, Orlando (1988). Reprint: Dover (2009)

    Google Scholar 

  2. Alling, N.L.: Foundation of Analysis Over Surreal Number Fields, vol. 141 of North-Holland Mathematics Studies. North-Holland Publishing Co., Holland (1987)

    Google Scholar 

  3. Bell, J.L.: A Primer of Infinitesimal Analysis. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  4. Benci, V., Di Nasso, M.: A ring homomorphism is enough to get nonstandard analysis. Bull. Belg. Math. Soc.–S. Stevin. 10, 481–490 (2003)

    Google Scholar 

  5. Benci, V., Di Nasso, M.: A purely algebraic characterization of the hyperreal numbers. Proc. Am. Math. Soc. 133(9), 2501–2505 (2005

    Article  MathSciNet  MATH  Google Scholar 

  6. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications, vol. 137. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  7. Bertram, W.: Differential Geometry, Lie Groups and Symmetric Spaces Over General Base Fields and Rings. American Mathematical Society, Providence (2008)

    Google Scholar 

  8. Berz, M.: Automatic differentiation as nonarchimedean analysis, Computer arithmetic and enclosure methods. p. 43–9. Elsevier Science Publisher, Amsterdam (1992)

    Google Scholar 

  9. Berz, M.: Analysis on a nonArchimedean extension of the real numbers. Mathematics Summer Graduate School of the German National Merit Foundation, MSUCL-933, Department of Physics, Michigan State University, 1992 and 1995 edition, (1994)

    Google Scholar 

  10. Berz, M., Hoffstatter, G., Wan, W., Shamseddine, K., Makino, K.: COSY INFINITY and its applications to nonlinear dynamics. In: Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 363–367. SIAM, Philadelphia (1996)

    Google Scholar 

  11. Colombeau, J.F.: Multiplication of Distributions. Springer, Berlin (1992)

    MATH  Google Scholar 

  12. Conway, J.H.: On Numbers and Games, Number 6 in L.M.S. Monographs. Academic Press, London & New York (1976)

    Google Scholar 

  13. Conway, J.: Infinitesimals vs. indivisibles replies: 20. The Math Forum Drexel, Feb. 17 1999. URL http://mathforum.org/kb/message.jspa? messageID=1381465&tstart=0. (1999)

    Google Scholar 

  14. Cuesta Dutari, N.: Algebra ordinal, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales. XLVIII(2), 79–160 (1954)

    Google Scholar 

  15. Delcroix, A.: Topology and functoriality in (\(\mathcal C,\mathcal E,\mathcal P\))-algebras: application to singular differential problems. J. Math. Anal. Appl. 359, 394–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delcroix, A., Scarpalezos, D.: Asymptotic scales-asymptotic algebras. Integr. Trans. Spec. Funct. 6, 1–4, 181–190 (1998)

    Article  MathSciNet  Google Scholar 

  17. Dirac, P.A.M.: The physical interpretation of the quantum dynamics. Proc. R. Soc. Lond. A(113), 621–641 (1926–1927)

    Google Scholar 

  18. Dirac, P.A.M.: General Theory of Relativity. Wiley, Hoboken (1975)

    Google Scholar 

  19. Ehrlich, P.: An alternative construction of Conway’s ordered field No. Algebra Uni. 25, 7–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ehrlich, P.: The rise of non-Archimedean mathematics and the roots of a misconception I: The emergence of non-Archimedean systems of magnitudes. Arch. Hist. Exact Sci. 60(1), 1–121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ehrlich, P.: Conway names, the simplicity hierarchy and the surreal number tree. J. Logic Anal. 3(1), 1–26 (2011)

    MathSciNet  Google Scholar 

  22. Ehrlich, P.: The absolute arithmetic continuum and the unification of all numbers great and small. Bull. Symbol. Logic. 18(1), 1–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1926)

    MATH  Google Scholar 

  24. Fornasiero, A.: Integration on surreal numbers. PhD thesis, University of Edinburgh. www.dm.unipi.it/˜fornasiero/phd_thesis/thesis_fornasiero_linearized.pdf (2004)

  25. Garth Dales, H., Woodin, W. H.: Super-real fields, London Mathematical Society Monographs, New Series, vol. 14. The Clarendon Press Oxford University Press, New York, 1996, Totally ordered fields with additional structure; Oxford Science Publications (1996)

    Google Scholar 

  26. Giordano, P.: Fermat reals: Nilpotent infinitesimals and infinite dimensional spaces. arXiv:0907.1872, July (2009)

    Google Scholar 

  27. Giordano, P.: The ring of Fermat reals. Adv. Math. 225(4), 2050–2075 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giordano, P.: Infinitesimals without logic. Russian J. Math. Phys. 17(2), 159–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giordano, P.: Infinite dimensional spaces and cartesian closedness. J. Math. Phys. Anal. Geomet. 7(3), 225–284 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Giordano, P.: Fermat–Reyes method in the ring of Fermat reals. Adv. Math. 228, 862–893 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Giordano, P., Katz, M.: Potential and actual infinitesimals in models of continuum, www.mat.univie.ac.at/˜giordap7/#preprints (2012)

  32. Giordano, P., Kunzinger, M.: Topological and algebraic structures on the ring of Fermat reals. Israel J. Math. DOI: 10.1007/s11856-012-0079-z. (2011)

    Google Scholar 

  33. Giordano, P., Kunzinger, M.: Generalized functions as smooth set-theoretical maps, article in preparation, www.mat.univie.ac.at/~giordap7/#preprints

    Google Scholar 

  34. Giordano, P., Kunzinger, M., Vernaeve, H.: Strongly internal sets and generalized smooth functions. Submitted to Journal of Mathematical Analysis and Applications on February 2014. See www.mat.univie.ac.at/~giordap7/#preprints

    Google Scholar 

  35. Goldblatt, R.: Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. Springer, New York, (1998)

    Book  MATH  Google Scholar 

  36. Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  37. Harzheim, E.: Beiträge zur Theorie der Ordnungstypen, insbesondere der a \(\eta\alpha\)-Mengen. Math. Annalen. 154, 116–134 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  38. Henle, M.: Which Numbers are Real? The Mathematical Association of America, Wasington, DC (2012)

    Book  Google Scholar 

  39. Iglesias-Zemmour, P.: Diffeology, AMS, Mathematical Surveys and Monographs 185, to appear on April (2013)

    Google Scholar 

  40. Katz, M.G., Tall, D.: A Cauchy–Dirac delta function: foundations of science. http://dx.doi.org/10.1007/s10699-012-9289-4 and http://arxiv.org/abs/1206.0119 (2012)

    Google Scholar 

  41. Knuth, D.E.: Surreal Numbers: How Two Ex-students Turned On to Pure Mathematics and Found Total Happiness: A Mathematical Novelette. Addison-Wesley, Massacheuts (1974)

    Google Scholar 

  42. Kock, A.: Synthetic Differential Geometry. London Math, Society Lecture Note Series, vol. 51. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  43. Kolár, I., Michor, P.W. Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  44. Kriegl, A., Michor, P.W.: Product preserving functors of infinite dimensional manifolds. Archivum Mathematicum (Brno). 32(4), 289–306 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Kriegl, A., Michor, P.W.: The Convenient Settings of Global Analysis. Mathematical Surveys and monographs, vol. 53. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  46. Laugwitz, D.: Tullio Levi-Civita’s work on nonarchimedean structures (with an appendix: Properties of Levi-Civita fields). In Atti dei Convegni Lincei 8: Convegno Internazionale Celebrativo del Centenario della Nascita di Tullio Levi-Civita, Roma, 1975, Accademia Nazionale dei Lincei (1975)

    Google Scholar 

  47. Laugwitz, D.: Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820. Arch. Hist. Exact Sci. 39(3), 195–245 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  49. Levi-Civita, T.: Sugli infiniti ed infinitesimi attuali quali elementi analitici. Atti del Regio Istituto Veneto di Scienze Lettere ed Arti. VII(4), 1765–1815 (1893)

    Google Scholar 

  50. Levi-Civita, T.: Sui numeri transfiniti. Rendiconti della Reale Accademia dei Lincei. VI(1 Sem.), 113–121 (1898)

    Google Scholar 

  51. Mamane, L.E.: Surreal numbers in Coq. In: Types for Proofs and Programs. Lecture Notes in Computer Science, vol. 3839, pp. 170–185. Springer, Berlin (2006)

    Google Scholar 

  52. Moerdijk, I., Reyes, G.E.: Models for Smooth Infinitesimal Analysis. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  53. Palmgren, E.: Developments in constructive nonstandard analysis. Bull. Symbol. Logic. 4(3), 233–272 (1998)

    Google Scholar 

  54. Palmgren, E.: A note on [AQ1] Brouwer’s weak continuity principle and the transfer principle in nonstandard analysis. J. Logic Anal. 3 pp. 1–7 (2012)

    Google Scholar 

  55. Robinson, A.: Non-standard Analysis. North-Holland Publishing Co., Amsterdam (1966)

    MATH  Google Scholar 

  56. Schmieden, C., Laugwitz, D.: Eine Erweiterung der Infinitesimalrechnung. Math. Zeitschr. 69, l–39 (1958)

    Article  MathSciNet  Google Scholar 

  57. Schwartz, L.: Théorie des distributions, vol. 1–2. Hermann, Paris (1950)

    Google Scholar 

  58. Schwartz, L.: Sur l’impossibilité de la multiplications des distributions. C.R. Acad. Sci. Paris. 239, 847–848 (1954)

    MathSciNet  MATH  Google Scholar 

  59. Sebasti˜ao e Silva, J.: Sur une construction axiomatique de la theorie des distributions, Rev. da Fac. de Ciências de Lisboa, 2 série-A, vol. 4, pp. 79–186 (1954–1955)

    Google Scholar 

  60. Shamseddine, K.: One-variable and multi-variable calculus on a non-Archimedean field extension of the real numbers, p-Adic numbers, ultrametric analysis, and applications. In print

    Google Scholar 

  61. Shamseddine, K.: On the topological structure of the Levi-Civita field. J. Math. Anal. Appl. 368, 281–292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shamseddine, K.: Absolute and relative extrema, the mean value theorem and the inverse function theorem for analytic functions on a Levi-Civita field. In: Jesus A.-G., Diarra, B., Escassut, A. (eds.) Contemporary Mathematics, Advances in Non-Archimedean Analysis, vol. 551, pp. 257–268. American Mathematical Society, Providence (2011)

    Google Scholar 

  63. Shamseddine, K.: Nontrivial order preserving automorphisms of non-Archimedean fields. In: Jarosz, K. (ed.) Contemporary Mathematics. Function Spaces in Modern Analysis, vol. 547, pp. 217–225. American Mathematical Society, Providence (2011)

    Google Scholar 

  64. Shamseddine, K.: New results on integration on the Levi-Civita field. Indagationes Math. 24(1), 199–211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Shamseddine, K., Berz, M.: Intermediate value theorem for analytic functions on a Levi-Civita field. Bull. Belg. Math. Soc. Simon Stevin. 14, 1001–1015 (2007)

    MathSciNet  MATH  Google Scholar 

  66. Shamseddine, K., Berz, M.: Analysis on the Levi-Civita field: a brief overview. In: Berz, M., Shamseddine, K. (eds.) Contemporary Mathematics. Advances in p-Adic and Non-Archimedean Analysis, vol. 508, pp. 215–237. American Mathematical Society, Providence (2010). ISBN 978-0-8218-4740-4

    Google Scholar 

  67. Shamseddine, K., Grafton, W.: Preliminary notes on Fourier series for functions on the Levi-Civita field. Int. J. Math. Anal. 6(19), 941–950 (2012)

    MathSciNet  MATH  Google Scholar 

  68. Shamseddine, K., Sierens, T.: On locally uniformly differentiable functions on a complete non-Archimedean ordered field extension of the real numbers. ISRN Math. Anal. 2012: Article ID 387053 (2012), http://www.hindawi.com/journals/isrn.mathematical.analysis/2012/387053/abs/ they say only the additional information: 20 pages http://dx.doi.org/10.5402/2012/387053

    Google Scholar 

  69. Shamseddine, K., Rempel, T., Sierens, T.: The implicit function theorem in a non-Archimedean setting. Indagationes Math. 20(4), 603–617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Tall, D.: Looking at graphs through infinitesimal microscopes, windows and telescopes. Math. Gaz. 64, 22–49 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  71. Vernaeve, H.: Generalized analytic functions on generalized domains, arXiv:0811.1521v1, (2008)

    Google Scholar 

  72. Weil, A.: Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, pp. 111–117, C.N.R.S. (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giordano, P. (2014). Which Numbers Simplify Your Problem?. In: Rassias, T., Pardalos, P. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1106-6_7

Download citation

Publish with us

Policies and ethics