Skip to main content

Spectral Properties of Toeplitz Operators Acting on Gabor Type Reproducing Kernel Hilbert Spaces

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

This is a survey presenting an overview of the results describing the behavior of the eigenvalues of compact Gabor–Toeplitz operators and Gabor multipliers. We introduce Gabor–Toeplitz operators and Gabor multipliers as Toeplitz operators defined in the context of general reproducing kernel Hilbert spaces. In the first case the reproducing kernel Hilbert space is derived from the continuous Gabor reproducing formula, and in the second case, out of the discrete Gabor reproducing formula, based on tight Gabor frames. The extended metaplectic representation provides all affine transformations of the phase-space. Both classes of operators satisfy natural transformation properties with respect to this group, and both have natural interpretations from the point of view of phase space geometry. Toeplitz operators defined on the Fock space of several complex variables are at the background of the topic. The Berezin transform of general reproducing kernel Hilbert spaces applied to both kinds of Toeplitz operators shares in both cases the same natural phase-space interpretation of the Fock space model. In the first part of the survey we discuss the dependence of the eigenvalues on symbols and generating functions. Then we concentrate on Szegö type asymptotic formulae in order to analyze the dependence on the symbol and on Schatten class cutoff phenomena in dependence on the generating function. In the second part we restrict attention to symbols which are characteristic functions of phase space domains, called localization domains in the current context. The corresponding Toeplitz operators are called localization operators. We present results expressing mutual interactions between localization domains and generating functions from the point of view of the eigenvalues of the localization operators. In particular, we discuss asymptotic boundary forms quantifying these interactions locally at the boundary points of localization domains. Our approach to localization operators is motivated by the principles of the semiclassical limit. We finish the survey with a list of open problems and possible future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axler, S., Zheng, D.: Compact operators via the Berezin transform. Indiana Univ. Math. J. 47, 387–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balan, R.: The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. Trans. Am. Math. Soc. 360, 3921–3941 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc. 301, 813–829 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4, 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF regional conference series, no. 6, SIAM, Philadelphia, 1992

    Google Scholar 

  6. DeMari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. 65, 720–732 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dörfler, M., Torrésani, B.: Representations of operators in the time-frequency domain and generalized Gabor multipliers. J. Fourier Anal. Appl. 16, 261–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Feichtinger, H.G., Strohmer, T. (eds.) Applied and Numerical Harmonic Analysis, pp. 99–128. Birkhauser (2003)

    Google Scholar 

  9. Feichtinger, H.G., K. Nowak, M.: Pap Asymptotic boundary forms for tight Gabor frames and lattice localization domains, in preparation

    Google Scholar 

  10. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms, Theory and Applications. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  11. Feichtinger, H.G., Nowak, K.: A Szegö-type theorem for Gabor-Toeplitz localization operators. Michigan Math. J. 49, 13–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Birkhäuser, Boston (2002)

    Google Scholar 

  13. Folland, G.: Harmonic Analysis in Phase Space. Princeton University Pres, Princeton (1989)

    MATH  Google Scholar 

  14. Fonseca, I., Müller, S.: The Wulff Theorem Revisited. Proc. Roy. Soc. Edinb. Sect. A 119, 125–136 (1991)

    Article  MATH  Google Scholar 

  15. Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MATH  Google Scholar 

  16. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  17. Gröchenig, K., Stöckler, J.: Gabor Frames and Totally Positive Functions. Duke Math. J. 162(6), 1003–1031 (2013)

    Google Scholar 

  18. Grudsky, S., Vasilevski, N.: Toeplitz operators on the Fock space: Radial component effects. Integr. Equ. Oper. Theory 44, 10–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isralowitz, J., Zhu, K.: Toeplitz operators on the Fock space. Integr. Equ. Oper. Theory 66, 593–611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janas, J.: Unbounded Toeplitz operators in the Segal-Bargmann space. Studia Math. 99, 87–99 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Janas, J., Stochel, J.: Unbounded Toeplitz operators in the Segal-Bargmann space II. J. Funct. Anal. 126, 418–447 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Landau, H.J.: On the density of phase-space expansions. IEEE Trans. Inf. Theory 39, 1152–1156 (1993)

    Article  MATH  Google Scholar 

  23. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. McCann, R.J.: Equilibrium shapes for planar crystals in an external field. Comm. Math. Phys. 195, 699–723 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nowak, K.: Optimal localization domains for Gabor-Toeplitz operators. unpublished manuscript.

    Google Scholar 

  26. Nowak, K.: Local Toeplitz operators based on wavelets: Phase space patterns for rough wavelets. Studia Math. 119, 37–64 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Perälä, A., Taskinen, J., Virtanen, J.: Toeplitz operators with distributional symbols on Fock spaces. Funct. Approx. Comment. Math. 44, 203–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, J.: Crystalline variational problems. Bull. Am. Math. Soc. 84, 568–588 (1978)

    Article  MATH  Google Scholar 

  29. Widom, H.: Szegö limit theorem: The higher-dimensional matrix case. J. Funct. Anal. 39, 182–198 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, New York (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Feichtinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feichtinger, H., Nowak, K., Pap, M. (2014). Spectral Properties of Toeplitz Operators Acting on Gabor Type Reproducing Kernel Hilbert Spaces. In: Rassias, T., Pardalos, P. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1106-6_6

Download citation

Publish with us

Policies and ethics