Skip to main content

I.D. Vitreous Cytokines and Regression of the Fetal Hyaloid Vasculature

  • Chapter
  • First Online:
Vitreous

Abstract

The fetal hyaloid vasculature plays a critical role in many aspects of proper ocular development. The hyaloid artery (HA) is a large vessel that extends from the optic disc through the vitreous where it branches and extends to the posterior surface of the lens to anastamose with the tunica vasculosa lentis (TVL) which supplies nutrients to the developing lens in the fetus (Figure I.D-1). In humans, the entire embryonic vascular system regresses by birth, which is necessary for media clarity and normal vision. Regression of the hyaloid vasculature is a very complex process likely requiring the participation of many proteins. The mechanisms of hyaloid vessel regression are not known, but insight could be obtained by understanding how this fetal vasculature forms. One study of human embryonic vitreous revealed the presence of blood islands composed of aggregates of primitive erythroblasts and hemangioblasts, as early as the seventh week of gestation (WG) [1]. These cell aggregates express hematopoietic stem cell markers, and the ligands for these markers are expressed in high concentrations in the lens and retina, probably functioning to guide the cells into the vitreous body assembling the fetal vitreous vasculature by hemo-vasculogenesis [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLeod DS, Hasegawa T, Baba T, Grebe R, Galtierd’Auriac I, Merges C, Edwards M, Lutty GA. From blood islands to blood vessels: morphologic observations and expression of key molecules during hyaloid vascular system development. Invest Ophthalmol Vis Sci. 2012;53(13):7912–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Mann IC. The relations of the hyaloid canal in the foetus and in the adult. J Anat. 1928;62(3):290–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Hamming NA, Apple DJ, Gieser DK, Vygantas CM. Ultrastructure of the hyaloid vasculature in primates. Invest Ophthalmol Vis Sci. 1977;16(5):408–15.

    PubMed  CAS  Google Scholar 

  4. Zhu M, Provis JM, Penfold PL. The human hyaloid system: cellular phenotypes and inter-relationships. Exp Eye Res. 1999;68(5):553–63.

    PubMed  CAS  Google Scholar 

  5. Saint-Geniez M, D’Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 2004;48(8–9):1045–58.

    PubMed  Google Scholar 

  6. Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn. 1998;213(3):322–33.

    PubMed  CAS  Google Scholar 

  7. Barishak YR. Embryology of the eye and its adnexae. Dev Ophthalmol. 1992;24:1–142.

    PubMed  CAS  Google Scholar 

  8. Ito M, Yoshioka M. Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol (Berl). 1999;200(4):403–11.

    CAS  Google Scholar 

  9. Taniguchi H, Kitaoka T, Gong H, Amemiya T. Apoptosis of the hyaloid artery in the rat eye. Ann Anat. 1999;181(6):555–60.

    PubMed  CAS  Google Scholar 

  10. el-Hifnawi E, el-Hifnawi A, Frankenberg C, Keeler C. Ultrastructure and regression of the tunica vasculosa lentis in newborn Wistar rats. Ann Anat. 1994;176(2):143–9.

    PubMed  CAS  Google Scholar 

  11. Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM, et al. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70(6):767–76.

    PubMed  CAS  Google Scholar 

  12. Ko MK, Chi JG, Chang BL. Hyaloid vascular pattern in the human fetus. J Pediatr Ophthalmol Strabismus. 1985;22(5):188–93.

    PubMed  CAS  Google Scholar 

  13. Achiron R, Kreiser D, Achiron A. Axial growth of the fetal eye and evaluation of the hyaloid artery: in utero ultrasonographic study. Prenat Diagn. 2000;20(11):894–9.

    PubMed  CAS  Google Scholar 

  14. Birnholz JC, Farrell EE. Fetal hyaloid artery: timing of regression with US. Radiology. 1988;166(3):781–3.

    PubMed  CAS  Google Scholar 

  15. Jack RL. Regression of the hyaloid vascular system. An ultrastructural analysis. Am J Ophthalmol. 1972;74(2):261–72.

    PubMed  CAS  Google Scholar 

  16. Sebag J, Yee KMP, Madigan MC, Aiello LP, Sadun AA. Bioinformatic analysis of embryonic human vitreomics. Invest Ophthalmol Vis Sci (ARVO Abstract 4928). 2012.

    Google Scholar 

  17. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014. Epub ahead of print.

    Google Scholar 

  18. Aickin M, Gensler H. Adjusting for multiple testing when reporting research results: the Bonferroni vs. Holm methods. Am J Public Health. 1996;86(5):726–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Dougherty TJ, Pucci MJ. Antibiotic discovery and development. New York: Springer; 2011.

    Google Scholar 

  20. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23.

    PubMed  CAS  Google Scholar 

  21. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009;37(Pt 5):937–53.

    PubMed  CAS  Google Scholar 

  22. Albè E, Chang JH, Azar NF, Ivanov AR, Azar DT. Proteomic analysis of the hyaloid vascular system regression during ocular development. J Proteome Res. 2008;7(11):4904–13.

    PubMed  PubMed Central  Google Scholar 

  23. Preis I, Langer R, Brem H, Folkman J. Inhibition of neovascularization by an extract derived from vitreous. Am J Ophthalmol. 1977;84(3):323–8.

    PubMed  CAS  Google Scholar 

  24. Hahn P, Lindsten T, Tolentino M, Thompson CB, Bennett J, Dunaief JL. Persistent fetal ocular vasculature in mice deficient in bax and bak. Arch Ophthalmol. 2005;123(6):797–802.

    PubMed  Google Scholar 

  25. Wang S, Park S, Fei P, Sorenson CM. Bim is responsible for the inherent sensitivity of the developing retinal vasculature to hyperoxia. Dev Biol. 2011;349(2):296–309.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Wang S, Sorenson CM, Sheibani N. Attenuation of retinal vascular development and neovascularization during oxygen-induced ischemic retinopathy in Bcl-2−/−mice. Dev Biol. 2005;279(1):205–19.

    PubMed  CAS  Google Scholar 

  27. Lutty GA, Merges C, Threlkeld AB, Crone S, McLeod DS. Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci. 1993;34(3):477–87.

    PubMed  CAS  Google Scholar 

  28. Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23(9):2078–93.

    PubMed  CAS  Google Scholar 

  29. Zheng Y, Devitt C, Liu J, Iqbal N, Skapek SX. Arf induction by Tgfβ is influenced by Sp1 and C/ebpβ in opposing directions. PLoS One. 2013;8(8):e70371.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. McKeller RN, Fowler JL, Cunningham JJ, Warner N, Smeyne RJ, Zindy F, Skapek SX. The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development. Proc Natl Acad Sci USA. 2002;99(6):3848–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Albe E, Escalona E, Rajagopal R, Javier JA, Chang JH, Azar DT. Proteomic identification of activin receptor-like kinase-1 as a differentially expressed protein during hyaloid vascular system regression. FEBS Lett. 2005;579(25):5481–6.

    PubMed  CAS  Google Scholar 

  32. Sukhikh GT, Panova IG, Smirnova YA, Milyushina LA, Firsova NV, Markitantova YV, et al. Expression of transforming growth factor-β2in vitreous body and adjacent tissues during prenatal development of human eye. Bull Exp Biol Med. 2010;150(1):117–21.

    PubMed  CAS  Google Scholar 

  33. Reichel MB, Ali RR, D’Esposito F, Clarke AR, Luthert PJ, Bhattacharya SS, et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death Differ. 1998;5(2):156–62.

    PubMed  CAS  Google Scholar 

  34. Dueñas Z, Rivera JC, Quiróz-Mercado H, Aranda J, Macotela Y, Montes de Oca P. Prolactin in eyes of patients with retinopathy of prematurity: implications for vascular regression. Invest Ophthalmol Vis Sci. 2004;45(7):2049–55.

    PubMed  Google Scholar 

  35. Hanashima C, Namiki H. Reduced viability of vascular endothelial cells by high concentration of ascorbic acid in vitreous humor. Cell Biol Int. 1999;23(4):287–98.

    PubMed  CAS  Google Scholar 

  36. Lee HJ, Ahn BJ, Shin MW, Jeong JW, Kim JH, Kim KW. Ninjurin1 mediates macrophage-induced programmed cell death during early ocular development. Cell Death Differ. 2009;16(10):1395–407.

    PubMed  CAS  Google Scholar 

  37. Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993;74(3):453–62.

    PubMed  CAS  Google Scholar 

  38. Jacobson B, Basu PK, Hassany SM. Vascular endothelial cell growth inhibitor of normal and pathologic vitreous. Arch Ophthalmol. 1984;102:1543–5.

    PubMed  CAS  Google Scholar 

  39. Jacobson B, Dorfman T, Basu PK, et al. Inhibition of vascular endothelial cell growth and trypsin activity by vitreous. Exp Eye Res. 1985;41:581–95.

    PubMed  CAS  Google Scholar 

  40. Zhu M, Penfold PL, Madigan MC, Billson FA. Effect of human vitreous and hyalocyte-derived factors on vascular endothelial cell growth. Aust N Z J Ophthalmol. 1997;25 Suppl 1:S57–60.

    PubMed  Google Scholar 

  41. Lang R, Lustig M, Francois F, Sellinger M, Plesken H. Apoptosis during macrophage-dependent ocular tissue remodelling. Development. 1994;120:3395–403.

    PubMed  CAS  Google Scholar 

  42. McMenamin PG, Djano J, Wealthall R, Griffin BJ. Characterization of the macrophages associated with the tunica vasculosa lentis of the rat eye. Invest Ophthalmol Vis Sci. 2002;43(7):2076–82.

    PubMed  Google Scholar 

  43. Arima M, Yoshida S, Nakama T, Ishikawa K, Nakao S, Yoshimura T, et al. Involvement of periostin in regression of hyaloid vascular system during ocular development. Invest Ophthalmol Vis Sci. 2012;53(10):6495–503.

    PubMed  CAS  Google Scholar 

  44. Zhang C, Asnaghi L, Gongora C, Patek B, Hose S, Ma B, et al. A developmental defect in astrocytes inhibits programmed regression of the hyaloid vasculature in the mammalian eye. Eur J Cell Biol. 2011;90(5):440–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development. 1997;124(18):3633–8.

    PubMed  CAS  Google Scholar 

  46. Luhmann UF, Lin J, Acar N, Lammel S, Feil S, Grimm C, et al. Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci. 2005;46(9):3372–82.

    PubMed  Google Scholar 

  47. Ohlmann AV, Adamek E, Ohlmann A, Lütjen-Drecoll E. Norrie gene product is necessary for regression of hyaloid vessels. Invest Ophthalmol Vis Sci. 2004;45(7):2384–90.

    PubMed  Google Scholar 

  48. Meeson AP, Argilla M, Ko K, Witte L, Lang RA. VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development. 1999;126(7):1407–15.

    PubMed  CAS  Google Scholar 

  49. Schultz GS, Grant MB. Neovascular growth factors. Eye (Lond). 1991;5(2):170–80.

    Google Scholar 

  50. Edqvist PH, Niklasson M, Vidal-Sanz M, Hallböök F, Forsberg-Nilsson K. Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation. PLoS One. 2012;7(8):e42488.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Garcia CM, Shui YB, Kamath M, DeVillar J, Johnson RS, Gerber HP, et al. The function of VEGF-A in lens development: formation of the hyaloid capillary network and protection against transient nuclear cataracts. Exp Eye Res. 2009;88(2):270–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Feeney SA, Simpson DA, Gardiner TA, Boyle C, Jamison P, Stitt AW. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest Ophthalmol Vis Sci. 2003;44(2):839–47.

    PubMed  Google Scholar 

  53. Shui YB, Wang X, Hu JS, Wang SP, Garcia CM, Potts JD. Vascular endothelial growth factor expression and signaling in the lens. Invest Ophthalmol Vis Sci. 2003;44(9):3911–9.

    PubMed  Google Scholar 

  54. Hackett SF, Wiegand S, Yancopoulos G, Campochiaro PA. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol. 2002;192(2):182–7.

    PubMed  CAS  Google Scholar 

  55. Rousseau B, Larrieu-Lahargue F, Bikfalvi A, Javerzat S. Involvement of fibroblast growth factors in choroidal angiogenesis and retinal vascularization. Exp Eye Res. 2003;77(2):147–56.

    PubMed  CAS  Google Scholar 

  56. Felton SM, Brown GC, Felberg NT, Federman JL. Vitreous inhibition of tumor neovascularization. Arch Ophthalmol. 1979;97(9):1710–3.

    PubMed  CAS  Google Scholar 

  57. Lutty GA, Thompson DC, Gallup JY. Vitreous – an inhibitor of retinal extract-induced neovascularization. Invest Ophthalmol Vis Sci. 1983;24:52–6.

    PubMed  CAS  Google Scholar 

  58. Raymond L, Jacobson B. Isolation and identification of stimulatory and inhibiting growth factors in bovine vitreous. Exp Eye Res. 1982;34:267–86.

    PubMed  CAS  Google Scholar 

  59. Taylor CM, Weiss JB. Partial purification of a 5.7K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem Biophys Res Commun. 1985;133(3):911–6.

    PubMed  CAS  Google Scholar 

  60. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med. 2012;2(5):a006627.

    PubMed  PubMed Central  Google Scholar 

  61. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000;19(6):1187–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    PubMed  Google Scholar 

  63. Ständker L, Schrader M, Kanse SM, Jürgens M, Forssmann WG, Preissner KT. Isolation and characterization of the circulating form of human endostatin. FEBS Lett. 1997;420(2–3):129–33.

    PubMed  Google Scholar 

  64. Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin. FASEB J. 2001;15(6):1044–53.

    PubMed  CAS  Google Scholar 

  65. Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engström A. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood. 2000;95(11):3403–11.

    PubMed  CAS  Google Scholar 

  66. Hurskainen M, Eklund L, Hägg PO, Fruttiger M, Sormunen R, Ilves M, et al. Abnormal maturation of the retinal vasculature in type XVIII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J. 2005;19(11):1564–6.

    PubMed  CAS  Google Scholar 

  67. Tombran-Tink J, Aparicio S, Xu X, Tink AR, Lara N, Sawant S, et al. PEDF and the serpins: phylogeny, sequence conservation, and functional domains. J Struct Biol. 2005;151(2):130–50.

    PubMed  CAS  Google Scholar 

  68. Sawant S, Aparicio S, Tink AR, Lara N, Barnstable CJ, Tombran-Tink J. Regulation of factors controlling angiogenesis in liver development: a role for PEDF in the formation and maintenance of normal vasculature. Biochem Biophys Res Commun. 2004;325(2):408–13.

    PubMed  CAS  Google Scholar 

  69. Rychli K, Huber K, Wojta J. Pigment epithelium-derived factor (PEDF) as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets. 2009;13(11):1295–302.

    PubMed  CAS  Google Scholar 

  70. Sundararajan V, Bohensky MA, Moore G, Brand CA, Lethborg C, Gold M, Murphy MA, Collins A, Philip J. Mapping the patterns of care, the receipt of palliative care and the site of death for patients with malignant glioma. J Neurooncol. 2014;116:119–26.

    PubMed  Google Scholar 

  71. Shoji S, Nakano M, Tomonaga T, Kim H, Hanai K, Usui Y, et al. Value of metastin receptor immunohistochemistry in predicting metastasis after radical nephrectomy for pT1 clear cell renal cell carcinoma. Clin Exp Metastasis. 2013;30(5):607–14.

    PubMed  CAS  Google Scholar 

  72. Zheng D, Chen H, Davids J, Bryant M, Lucas A. Serpins for diagnosis and therapy in cancer. Cardiovasc Hematol Disord Drug Targets. 2013;13(2):123–32.

    PubMed  CAS  Google Scholar 

  73. Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol. 2001;188(2):253–63.

    PubMed  CAS  Google Scholar 

  74. Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, et al. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci. 2002;43(3):821–9.

    PubMed  Google Scholar 

  75. Huang Q, Wang S, Sorenson CM, Sheibani N. PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperoxia-mediated vessel obliteration. Exp Eye Res. 2008;87(3):226–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Aranda J, Motiejunaite R, Silva P, Aiello LP, Kazlauskas A. Regression activity that is naturally present in vitreous becomes ineffective as patients develop proliferative diabetic retinopathy. Diabetologia. 2013;56(6):1444–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol. 2005;6:505–10.

    PubMed  CAS  Google Scholar 

  79. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990;181:195–213.

    CAS  Google Scholar 

  80. Kim JH, Kim JH, Yu YS, Mun JY, Kim KW. Autophagy-induced regression of hyaloid vessels in early ocular development. Autophagy. 2010;6(7):922–8.

    PubMed  CAS  Google Scholar 

  81. Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development. 1996;122(12):3929–38.

    PubMed  CAS  Google Scholar 

  82. Brown AS, Leamen L, Cucevic V, Foster FS. Quantitation of hemodynamic function during developmental vascular regression in the mouse eye. Invest Ophthalmol Vis Sci. 2005;46(7):2231–7.

    PubMed  Google Scholar 

  83. Browning J, Reichelt ME, Gole GA, Massa H. Proximal arterial vasoconstriction precedes regression of the hyaloid vasculature. Curr Eye Res. 2001;22(6):405–11.

    PubMed  CAS  Google Scholar 

  84. Bischoff PM, Wajer SD, Flower RW. Scanning electron microscopic studies of the hyaloid vascular system in newborn mice exposed to O2 and CO2. Graefes Arch Clin Exp Ophthalmol. 1983;220(6):257–63.

    PubMed  CAS  Google Scholar 

  85. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature. 2013;494(7436):243–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K, Gregory-Evans CY, Wells DJ, Lucas RJ. Expression of Opsin genes early in ocular development of humans and mice. Exp Eye Res. 2003;76(3):393–6.

    PubMed  CAS  Google Scholar 

  87. Kálmán M, Mahalek J, Adorján A, Adorján I, Pócsai K, Bagyura Z, Sadeghian S. Alterations of the perivascular dystrophin-dystroglycan complex following brain lesions. An immunohistochemical study in rats. Histol Histopathol. 2011;26:1435–52.

    PubMed  Google Scholar 

  88. Sotgia F, Lee H, Bedford MT, Petrucci T, Sudol M, Lisanti MP. Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins. Biochemistry. 2001;40(48):14585–92.

    PubMed  CAS  Google Scholar 

  89. Rambukkana A, Yamada H, Zanazzi G, Mathus T, Salzer JL, Yurchenco PD, Campbell KP, Fischetti VA. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science. 1998;282(5396):2076–9.

    PubMed  CAS  Google Scholar 

  90. Moore CJ, Winder SJ. Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell Commun Signal. 2010;8:3.

    PubMed  PubMed Central  Google Scholar 

  91. Mitchell A, Mathew G, Jiang T, Hamdy FC, Cross SS, Eaton C. Dystroglycan function is a novel determinant of tumor growth and behavior in prostate cancer. Prostate. 2013;73(4):398–408.

    PubMed  CAS  Google Scholar 

  92. Sgambato A, De Paola B, Migaldi M, Di Salvatore M, Rettino A, Rossi G, Faraglia B, Boninsegna A, Maiorana A, Cittadini A. Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J Cell Physiol. 2007;213(2):528–39.

    PubMed  CAS  Google Scholar 

  93. Ding Z, Joy M, Bhargava R, Gunsaulus M, Lakshman N, Miron-Mendoza M, Petrol M, Condeelis J, Wells A, Roy P. Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene. 2013. doi:10.1038/onc.2013.166 [Epub ahead of print].

    Google Scholar 

  94. Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. Review: Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta. 2006;1757:1301–11.

    PubMed  CAS  Google Scholar 

  95. Kim HJ, Yoo EK, Kim JY, Choi YK, Lee HJ, Kim JK, et al. Protective role of clusterin/apolipoprotein J against neointimal hyperplasia via antiproliferative effect on vascular smooth muscle cells and cytoprotective effect on endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(10):1558–64.

    PubMed  CAS  Google Scholar 

  96. Qi J, Chen N, Wang J, Siu CH. Transendothelial migration of melanoma cells involves N-Cadherin-mediated adhesion and activation of the β-Catenin signaling pathway. Mol Biol Cell. 2005;16(9):4386–97.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. “Gene ID: PECAM1 platelet/endothelial cell adhesion molecule 1,” last modified 25 Feb 2014, http://www.ncbi.nlm.nih.gov/gene/18613.

  98. Dimaio TA, Wang S, Huang Q, Scheef EA, Sorenson CM, Sheibani N. Attenuation of retinal vascular development and neovascularization in PECAM-1-deficient mice. Dev Biol. 2008;315(1):72–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Ramesh S, Bonshek RE, Bishop PN. Immunolocalisation of opticin in the human eye. Br J Ophthalmol. 2004;88(5):697–702.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Le Goff MM, Bishop PN. Focus on molecules: opticin. Exp Eye Res. 2007;85(3):303–4.

    PubMed  Google Scholar 

  101. Le Goff MM, Sutton MJ, Slevin M, Latif A, Humphries MJ, Bishop PN. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J Biol Chem. 2012;287(33):28027–36.

    PubMed  PubMed Central  Google Scholar 

  102. Ma J, Zhu TP, Moe MC, Ye P, Yao K. Opticin production is reduced by hypoxia and VEGF in human retinal pigment epithelium via MMP-2 activation. Cytokine. 2012;59(1):100–7.

    PubMed  CAS  Google Scholar 

  103. Le Goff MM, Lu H, Ugarte M, Henry S, Takanosu M, Mayne R, et al. The vitreous glycoproteinopticin inhibits preretinal neovascularization. Invest Ophthalmol Vis Sci. 2012;53(1):228–34.

    PubMed  PubMed Central  Google Scholar 

  104. Weinl C, Riehle H, Park D, Stritt C, Beck S, Huber G, et al. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. J Clin Invest. 2013;123(5):2193–206.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, Chang B, et al. Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res. 2002;132(2):145–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Cheong C, Sung YH, Lee J, Choi YS, Song J, Kee C, Lee HW. Role of INK4a locus in normal eye development and cataract genesis. Mech Ageing Dev. 2006;127(7):633–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag MD, FACS, FRCOphth, FARVO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yee, K.M.P. et al. (2014). I.D. Vitreous Cytokines and Regression of the Fetal Hyaloid Vasculature. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics