Skip to main content

V.A.2. Vitreomaculopathy Surgery

  • Chapter
  • First Online:
Vitreous

Abstract

Macular pucker results from a premacular membrane often referred to erroneously as an “epiretinal” membrane. The term “epi” means adjacent to, which could be subretinal. Furthermore, the membranes in question are attached to the macula; thus the term “premacular” is more precise for two reasons. This premacular membrane is a fibrocellular proliferation that grows on the internal limiting membrane of the macula [see chapter III.F. Vitreous in the pathobiology of macular pucker]. Premacular membrane contraction leads to progressive distortion of the macular structure, producing visual acuity loss and metamorphopsia (Figure V.A.2-1). Vitrectomy with membrane peeling has been shown to release the traction exerted on the macula, with an improvement in visual acuity and metamorphopsia. Since macular pucker is a very frequent pathology [1] that often progresses slowly, the optimum time for surgery remains unclear. Furthermore, in some cases in spite of an adequate removal of the premacular membrane, visual outcomes are unsatisfactory. In the last few years, several reports have focused on the prognostic factors that may help to determine when to recommend surgery to a specific patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contreras I, Noval S, Tejedor J. Use of optical coherence tomography to measure prevalence of epiretinal membranes in patients referred for cataract surgery. Arch Soc Esp Oftalmol. 2008;83:89–94.

    Article  PubMed  CAS  Google Scholar 

  2. Kim JH, Kim YM, Chung EJ, et al. Structural and functional predictors of visual outcome of epiretinal membrane surgery. Am J Ophthalmol. 2012;153:103–10.

    Article  PubMed  Google Scholar 

  3. Kim JH, Kang SW, Kong MG, Ha HS. Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol. 2013;251:1055–64.

    Article  PubMed  Google Scholar 

  4. Falkner-Radler CI, Glittenberg C, Hagen S, et al. Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology. 2010;117:798–805.

    Article  PubMed  Google Scholar 

  5. Inoue M, Morita S, Watanabe Y, et al. Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol. 2010;150:834–9.

    Article  PubMed  Google Scholar 

  6. Kinoshita T, Imaizumi H, Okushiba U, et al. Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2012;53:3592–7.

    Article  PubMed  Google Scholar 

  7. Mitamura Y, Hirano K, Baba T, Yamamoto S. Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol. 2009;93:171–5.

    Article  PubMed  CAS  Google Scholar 

  8. Okamoto F, Sugiura Y, Okamoto Y, et al. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci. 2012;53:6770–5.

    Article  PubMed  Google Scholar 

  9. Shimozono M, Oishi A, Hata M, et al. The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am J Ophthalmol. 2012;153:698–704, 704.

    Article  PubMed  Google Scholar 

  10. Suh MH, Seo JM, Park KH, Yu HG. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am J Ophthalmol. 2009;147:473–80.

    Article  PubMed  Google Scholar 

  11. Bae SH, Kim D, Park TK, et al. Preferential hyperacuity perimeter and prognostic factors for metamorphopsia after idiopathic epiretinal membrane surgery. Am J Ophthalmol. 2013;155:109–17.

    Article  PubMed  Google Scholar 

  12. Watanabe A, Arimoto S, Nishi O. Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology. 2009;116:1788–93.

    Article  PubMed  Google Scholar 

  13. Gupta P, Sadun AA, Sebag J. Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina. 2008;28:447–52.

    Article  PubMed  Google Scholar 

  14. Wang MY, Nguyen D, Hindoyan N, Sadun AA, Sebag J. Vitreo-papillary adhesion in macular hole and macular pucker. Retina. 2009;29:644–50.

    Article  PubMed  Google Scholar 

  15. Kwok AK, Lai TY, Yuen KS. Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Experiment Ophthalmol. 2005;33:379–85.

    Article  PubMed  Google Scholar 

  16. Park DW, Dugel PU, Garda J, et al. Macular pucker removal with and without internal limiting membrane peeling: pilot study. Ophthalmology. 2003;110:62–4.

    Article  PubMed  Google Scholar 

  17. Shimada H, Nakashizuka H, Hattori T, et al. Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology. 2009;116:1370–6.

    Article  PubMed  Google Scholar 

  18. Sebag J, Gupta P, Rosen R, Garcia P, Sadun AA. Macular holes and macular pucker: The role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc. 2007;105:121–31.

    PubMed  PubMed Central  Google Scholar 

  19. Sebag J. Vitreoschisis. Graefes Arch Clin Exp Ophthalmol. 2008;246:329–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gupta P, Yee KMP, Garcia P, et al. Vitreoschisis in macular diseases. Br J Ophthalmol. 2011;95:376–80.

    Article  PubMed  Google Scholar 

  21. Uemura A, Kanda S, Sakamoto Y, Kita H. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol. 2003;136:252–7.

    Article  PubMed  Google Scholar 

  22. Haritoglou C, Gandorfer A, Gass CA, et al. The effect of indocyanine-green on functional outcome of macular pucker surgery. Am J Ophthalmol. 2003;135:328–37.

    Article  PubMed  CAS  Google Scholar 

  23. Farah ME, Maia M, Furlani B, et al. Current concepts of trypan blue in chromovitrectomy. Dev Ophthalmol. 2008;42:91–100.

    Article  PubMed  CAS  Google Scholar 

  24. Farah ME, Maia M, Rodrigues EB. Dyes in ocular surgery: principles for use in chromovitrectomy. Am J Ophthalmol. 2009;148:332–40.

    Article  PubMed  Google Scholar 

  25. Sayed KM, Naito T, Farouk MM, et al. Twenty five-gauge sutureless vitrectomy versus 20-gauge vitrectomy in epiretinal membrane surgery. J Med Invest. 2012;59:69–78.

    Article  PubMed  Google Scholar 

  26. Sandali O, El SM, Lecuen N, et al. 25-, 23-, and 20-gauge vitrectomy in epiretinal membrane surgery: a comparative study of 553 cases. Graefes Arch Clin Exp Ophthalmol. 2011;249:1811–9.

    Article  PubMed  Google Scholar 

  27. Haas A, Seidel G, Steinbrugger I, et al. Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery. Retina. 2010;30:112–6.

    Article  PubMed  Google Scholar 

  28. Garcia-Fernandez M, Navarro JC, Sanz AF, Castano CG. Long-term evolution of idiopathic lamellar macular holes and macular pseudoholes. Can J Ophthalmol. 2012;47:442–7.

    Article  PubMed  Google Scholar 

  29. Gaudric A, Aloulou Y, Tadayoni R, Massin P. Macular Pseudoholes with Lamellar Cleavage of Their Edge Remain Pseudoholes. Am J Ophthalmol. 2013;155:733–42.

    Article  PubMed  Google Scholar 

  30. Theodossiadis PG, Grigoropoulos VG, Emfietzoglou I, et al. Spontaneous closure of lamellar macular holes studied by optical coherence tomography. Acta Ophthalmol. 2012;90:96–8.

    Article  PubMed  Google Scholar 

  31. Sebag J, Wang M, Nguyen D, Sadun AA. Vitreo-papillary adhesion in macular diseases. Trans Am Ophthalmol Soc. 2009;107:35–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Romano MR, Vallejo-Garcia JL, Camesasca FI, et al. Vitreo-papillary adhesion as a prognostic factor in pseudo- and lamellar macular holes. Eye. 2012;26:810–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Casparis H, Bovey EH. Surgical treatment of lamellar macular hole associated with epimacular membrane. Retina. 2011;31:1783–90.

    Article  PubMed  Google Scholar 

  34. Lee CS, Koh HJ, Lim HT, et al. Prognostic factors in vitrectomy for lamellar macular hole assessed by spectral-domain optical coherence tomography. Acta Ophthalmol. 2012;90:e597–602.

    Article  PubMed  Google Scholar 

  35. Reibaldi M, Avitabile T, Uva MG, et al. Ten Years of Severe Vitreomacular Traction Syndrome without Functional Damage Demonstrated by Optical Coherence Tomography. Case Rep Ophthalmol Med. 2011;931038.

    Google Scholar 

  36. Figueroa MS, Noval S, Contreras I. Macular structure on optical coherence tomography after lamellar macular hole surgery and its correlation with visual outcome. Can J Ophthalmol. 2011;46:491–7.

    Article  PubMed  Google Scholar 

  37. Michalewska Z, Michalewski J, Odrobina D, Nawrocki J. Non-full-thickness macular holes reassessed with spectral domain optical coherence tomography. Retina. 2012;32:922–9.

    Article  PubMed  Google Scholar 

  38. Parolini B, Schumann RG, Cereda MG, et al. Lamellar macular hole: a clinicopathologic correlation of surgically excised epiretinal membranes. Invest Ophthalmol Vis Sci. 2011;52:9074–83.

    Article  PubMed  Google Scholar 

  39. Androudi S, Stangos A, Brazitikos PD. Lamellar macular holes: tomographic features and surgical outcome. Am J Ophthalmol. 2009;148:420–6.

    Article  PubMed  Google Scholar 

  40. Hirakawa M, Uemura A, Nakano T, Sakamoto T. Pars plana vitrectomy with gas tamponade for lamellar macular holes. Am J Ophthalmol. 2005;140:1154–5.

    Article  PubMed  Google Scholar 

  41. Kokame GT, Tokuhara KG. Surgical management of inner lamellar macular hole. Ophthalmic Surg Lasers Imaging. 2007;38:61–3.

    PubMed  Google Scholar 

  42. Michalewska Z, Michalewski J, Cisiecki S, et al. Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2008;246:823–30.

    Article  PubMed  Google Scholar 

  43. Christensen UC, Kroyer K, Sander B, et al. Macular morphology and visual acuity after macular hole surgery with or without internal limiting membrane peeling. Br J Ophthalmol. 2010;94:41–7.

    Article  PubMed  CAS  Google Scholar 

  44. Salter AB, Folgar FA, Weissbrot J, Wald KJ. Macular hole surgery prognostic success rates based on macular hole size. Ophthalmic Surg Lasers Imaging. 2012;43:184–9.

    Article  PubMed  Google Scholar 

  45. Xirou T, Theodossiadis PG, Apostolopoulos M, et al. Macular hole surgery with short-acting gas and short-duration face-down positioning. Clin Ophthalmol. 2012;6:1107–12.

    PubMed  PubMed Central  Google Scholar 

  46. Christensen UC. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology. Acta Ophthalmol. 2009;87 Thesis 2:1–23.

    Google Scholar 

  47. Shimozono M, Oishi A, Hata M, Kurimoto Y. Restoration of the photoreceptor outer segment and visual outcomes after macular hole closure: spectral-domain optical coherence tomography analysis. Graefes Arch Clin Exp Ophthalmol. 2011;249:1469–76.

    Article  PubMed  Google Scholar 

  48. Wakely L, Rahman R, Stephenson J. A comparison of several methods of macular hole measurement using optical coherence tomography, and their value in predicting anatomical and visual outcomes. Br J Ophthalmol. 2012;96:1003–7.

    Article  PubMed  Google Scholar 

  49. Chen WC, Wang Y, Li XX. Morphologic and functional evaluation before and after successful macular hole surgery using spectral-domain optical coherence tomography combined with microperimetry. Retina. 2012;32:1733–42.

    PubMed  CAS  Google Scholar 

  50. Inoue M, Watanabe Y, Arakawa A, et al. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol. 2009;247:325–30.

    Article  PubMed  Google Scholar 

  51. Lois N, Burr J, Norrie J, et al. Internal limiting membrane peeling versus no peeling for idiopathic full-thickness macular hole: a pragmatic randomized controlled trial. Invest Ophthalmol Vis Sci. 2011;52:1586–92.

    Article  PubMed  Google Scholar 

  52. Haritoglou C, Sebag J: Indications and considerations for chromodissection. Retinal Physician 2014;11(5):34–39.

    Google Scholar 

  53. Christensen UC, Kroyer K, Sander B, et al. Value of internal limiting membrane peeling in surgery for idiopathic macular hole stage 2 and 3: a randomised clinical trial. Br J Ophthalmol. 2009;93:1005–15.

    Article  PubMed  CAS  Google Scholar 

  54. Tadayoni R, Paques M, Massin P, et al. Dissociated optic nerve fiber layer appearance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–83.

    Article  PubMed  CAS  Google Scholar 

  55. Tadayoni R, Svorenova I, Erginay A, et al. Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery. Br J Ophthalmol. 2012;96:1513–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tadayoni R, Gaudric A, Haouchine B, Massin P. Relationship between macular hole size and the potential benefit of internal limiting membrane peeling. Br J Ophthalmol. 2006;90:1239–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Spaide RF. “Dissociated optic nerve fiber layer appearance” after internal limiting membrane removal is inner retinal dimpling. Retina. 2012;32:1719–26.

    Article  PubMed  Google Scholar 

  58. Guillaubey A, Malvitte L, Lafontaine PO, et al. Comparison of face-down and seated position after idiopathic macular hole surgery: a randomized clinical trial. Am J Ophthalmol. 2008;146:128–34.

    Article  PubMed  Google Scholar 

  59. Tatham A, Banerjee S. Face-down posturing after macular hole surgery: a meta-analysis. Br J Ophthalmol. 2010;94:626–31.

    Article  PubMed  Google Scholar 

  60. Meng Q, Zhang S, Ling Y, et al. Long-term anatomic and visual outcomes of initially closed macular holes. Am J Ophthalmol. 2011;151:896–900.

    Article  PubMed  Google Scholar 

  61. Muselier A, Dugas B, Burelle X, et al. Macular hole surgery and cataract extraction: combined vs consecutive surgery. Am J Ophthalmol. 2010;150:387–91.

    Article  PubMed  Google Scholar 

  62. Sebag J. Pharmacologic vitreolysis. Retina. 1998;18:1–3.

    Article  PubMed  CAS  Google Scholar 

  63. Sebag J. Is Pharmacologic Vitreolysis Brewing? Retina. 2002;22:1–3.

    Article  PubMed  CAS  Google Scholar 

  64. Sebag J. Pharmacologic vitreolysis– premise and promise of the first decade. Retina. 2009;29:871–4.

    Article  PubMed  CAS  Google Scholar 

  65. Sebag J. The emerging role of pharmacologic vitreolysis. Retinal Physician. 2010;7:52–6.

    Google Scholar 

  66. Tozer K, Fink W, Sadun AA, Sebag J. Prospective three-dimensional analysis of structure and function in macular hole treated by pharmacologic vitreolysis. Retin Cases Brief Rep. 2013;7:57–61.

    Article  PubMed  Google Scholar 

  67. Stalmans P, Benz MS, Gandorfer A, et al. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med. 2012;367:606–15.

    Article  PubMed  CAS  Google Scholar 

  68. Malik A, Dooley I, Mahmood U. Single night postoperative prone posturing in idiopathic macular hole surgery. Eur J Ophthalmol. 2012;22:456–60.

    Article  PubMed  Google Scholar 

  69. Jackson TL, Donachie PH, Sparrow JM, Johnston RL. United Kingdom National Ophthalmology Database Study of Vitreoretinal Surgery: Report 2, Macular Hole. Ophthalmology. 2012. doi:10.1016/j.ophtha.2012.09.003. pii: S0161-6420(12)00862-7. [Epub ahead of print].

    PubMed Central  Google Scholar 

  70. Ruiz-Moreno JM, Staicu C, Pinero DP, et al. Optical coherence tomography predictive factors for macular hole surgery outcome. Br J Ophthalmol. 2008;92:640–4.

    Article  PubMed  CAS  Google Scholar 

  71. Charalampidou S, Nolan J, Beatty S. The natural history of tractional cystoid macular edema. Retina. 2012;32:2045–51.

    Article  PubMed  Google Scholar 

  72. Sebag J. Anomalous PVD, – a unifying concept in vitreo-retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.

    Article  PubMed  CAS  Google Scholar 

  73. Chang LK, Fine HF, Spaide RF, et al. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol. 2008;146:121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sonmez K, Capone Jr A, Trese MT, Williams GA. Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes. Retina. 2008;28:1207–14.

    Article  PubMed  Google Scholar 

  75. Witkin AJ, Patron ME, Castro LC, et al. Anatomic and visual outcomes of vitrectomy for vitreomacular traction syndrome. Ophthalmic Surg Lasers Imaging. 2010;41:425–31.

    Article  PubMed  Google Scholar 

  76. Yamada N, Kishi S. Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol. 2005;139:112–7.

    Article  PubMed  Google Scholar 

  77. Duker JS, Kaiser PK, Binder S, et al. The International Vitreomacular Traction Study Group Classification of Vitreomacular Adhesion, Traction, and Macular Hole. Ophthalmology. 2013. doi:10.1016/j.ophtha.2013.07.042. pii: S0161-6420(13)00682-9. [Epub ahead of print].

    Google Scholar 

  78. Larsson J. Vitrectomy in vitreomacular traction syndrome evaluated by ocular coherence tomography (OCT) retinal mapping. Acta Ophthalmol Scand. 2004;82:691–4.

    Article  PubMed  Google Scholar 

  79. Chung EJ, Lew YJ, Lee H, Koh HJ. OCT-guided hyaloid release for vitreomacular traction syndrome. Korean J Ophthalmol. 2008;22:169–73.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gandorfer A, Rohleder M, Kampik A. Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol. 2002;86:902–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Toklu Y, Demirel S, Sarac O, et al. Anatomic and functional outcome of triamcinolone-assisted 23-gauge vitrectomy in vitreomacular traction syndrome. Semin Ophthalmol. 2012;27:73–7.

    Article  PubMed  Google Scholar 

  82. Garretson BR, Pollack JS, Ruby AJ, et al. Vitrectomy for a symptomatic lamellar macular hole. Ophthalmology. 2008;115:884–6.

    Article  PubMed  Google Scholar 

  83. Witkin AJ, Castro LC, Reichel E, et al. Anatomic and visual outcomes of vitrectomy for lamellar macular holes. Ophthalmic Surg Lasers Imaging. 2010;41:418–24.

    Article  PubMed  Google Scholar 

  84. Almeida DR, Wong J, Belliveau M, et al. Anatomical and visual outcomes of macular hole surgery with short-duration 3-day face-down positioning. Retina. 2012;32:506–10.

    Article  PubMed  Google Scholar 

  85. Rahman R, Madgula I, Khan K. Outcomes of sulfur hexafluoride (SF6) versus perfluoroethane (C2F6) gas tamponade for non-posturing macular-hole surgery. Br J Ophthalmol. 2012;96:185–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta S. Figueroa MD, PhD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video V.A.2-1

(AVI 131278 kb)

Video V.A.2-2

(MP4 32435 kb)

Video V.A.2-3

(MP4 14006 kb)

Video V.A.2-4

(MP4 4699 kb)

Video V.A.2-5

(MP4 31513 kb)

Video V.A.2-6

(MP4 12030 kb)

Video V.A.2-7

(MP4 8136 kb)

Video V.A.2-8

(MP4 57089 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Figueroa, M.S., Contreras, I. (2014). V.A.2. Vitreomaculopathy Surgery. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics