Skip to main content

IV.C. Vitreous and Iris Neovascularization

  • Chapter
  • First Online:
Vitreous
  • 3193 Accesses

Abstract

Until the 1940s, the growth of newly formed blood vessels into the vitreous was thought to be the consequence of vitreous hemorrhage, not its cause. The process appeared to represent “organization” (i.e., the invasion of a hematoma by macrophages, capillaries, and fibroblasts to form “granulation tissue”), eventually resulting a fibrous scar. However, serial examinations of eyes with “rete mirabile” (neovascular networks) and “retinitis proliferans” (fibrovascular membranes) showed that, except after severe trauma, neovascular invasion of the extracellular matrix invariably precedes vitreous hemorrhaging (Figure IV.C-1) [1]. Here, the evolution of theories of vitreous and iris neovascularization will be examined from within the perspectives of time and first-hand observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballantyne AJ. The state of the retina in diabetes mellitus. Trans Ophthalmol Soc U K. 1946;66:503–43.

    Google Scholar 

  2. Michaelson IC. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc U K. 1948;68:137–80.

    Google Scholar 

  3. Ashton N. Arteriolar involvement in diabetic retinopathy. Br J Ophthalmol. 1953;37:282–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ashton N, Ward B, Serpell G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol. 1954;38:397–432.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ashton N, Cook C. Studies on developing retinal vessels – II. Influence of retinal detachment on oxygen vaso-obliteration. Br J Ophthalmol. 1954;39:457–62.

    Article  Google Scholar 

  6. Wise GN. Retinal neovascularisation. Trans Am Ophthalmol Soc. 1956;54:729–826.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Perraut LE, Zimmerman LE. The occurrence of glaucoma following occlusion of the central retinal artery. AMA Arch Ophthalmol. 1959;61:845–65.

    Article  PubMed  CAS  Google Scholar 

  8. Duker JS, Sivalingam A, Brown GC, et al. A prospective study of acute central retinal artery obstruction. The incidence of secondary ocular neovascularization. Arch Ophthalmol. 1991;109:339–42.

    Article  PubMed  CAS  Google Scholar 

  9. Hayreh SS. Acute retinal arterial occlusive disorders. Prog Retin Eye Res. 2011;30:359–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McLeod D. Letter to the editor: partial central retinal artery occlusion offers a unique insight into the ischaemic penumbra. Clin Ophthalmol. 2012;6:9–22.

    PubMed  PubMed Central  Google Scholar 

  11. Ashton N. Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br J Ophthalmol. 1963;47:521–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Shilling JS, Kohner EM. New vessel formation in retinal branch vein occlusion. Br J Ophthalmol. 1976;60:810–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Laatikainen L, Kohner EM. Fluorescein angiography and its prognostic significance in central retinal vein occlusion. Br J Ophthalmol. 1976;60:411–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hayreh SS. Neovascular glaucoma. Prog Retin Eye Res. 2007;26:470–85.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shimizu K, Kobayashi Y, Muraoka K. Mid-peripheral fundus involvement in diabetic retinopathy. Ophthalmology. 1981;88:601–12.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor E, Dobree JH. Proliferative diabetic retinopathy: site and size of initial lesions. Br J Ophthalmol. 1970;54:11–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. McLeod D. A chronic grey matter penumbra, lateral microvascular intussusception and venous peduncular avulsion underlie diabetic vitreous haemorrhage. Br J Ophthalmol. 2007;91:677–89.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Michels R. Vitreous surgery. St. Louis: CV Mosby Co; 1981.

    Google Scholar 

  19. McLeod D. Krogh cylinders in retinal development, panretinal hypoperfusion and diabetic retinopathy. Acta Ophthalmol. 2010;88:817–35.

    Article  PubMed  Google Scholar 

  20. Dollery CT, Bulpitt CJ, Kohner EM. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol Vis Sci. 1969;8:588–94.

    CAS  Google Scholar 

  21. Osterberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 1935;6(Suppl):1–103.

    Google Scholar 

  22. Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001;79:435–40.

    Article  PubMed  Google Scholar 

  23. Blankenship GW. A clinical comparison of central and peripheral argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1988;95:170–7.

    Article  PubMed  CAS  Google Scholar 

  24. Muqit MMK, Marcellino GR, Henson DB, et al. Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy. Manchester Pascal Study Report 4. Eye. 2011;25:1447–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Faulborn J, Bouald S. Microproliferations in proliferative diabetic retinopathy and their relationship to the vitreous: corresponding light and electron microscopic studies. Graefes Arch Clin Exp Ophthalmol. 1985;223:130–8.

    Article  PubMed  CAS  Google Scholar 

  26. Hosoda Y, Okada M, Matsumura M, et al. Epiretinal membrane of proliferative diabetic retinopathy: an immunohistochemical study. Ophthalmic Res. 1993;25:289–94.

    Article  PubMed  CAS  Google Scholar 

  27. Charles S. Vitreous microsurgery. Baltimore: Williams and Wilkins; 1981.

    Google Scholar 

  28. Terasaki H, Miyake Y, Mori M, et al. Fluorescein angiography of extreme peripheral retina and rubeosis iridis in proliferative diabetic retinopathy. Retina. 1999;19:302–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. Invest Ophthalmol Vis Sci. 2003;44:1793–800.

    Article  PubMed  Google Scholar 

  30. Lewis H, Abrams GW, Foos RY. Clinicopathological findings in anterior hyaloidal fibrovascular proliferation after diabetic vitrectomy. Am J Ophthalmol. 1987;104:614–8.

    Article  PubMed  CAS  Google Scholar 

  31. Stefánnson E, Loftsson T. Editorial: The Stokes-Einstein equation and the physiological effects of vitreous surgery. Acta Ophthalmol Scand. 2006;84:718–9.

    Article  Google Scholar 

  32. McLeod D. Microsurgical management of neovascularisation secondary to posterior segment ischaemia. Eye. 1991;5:252–9.

    Article  PubMed  Google Scholar 

  33. Wong HC, Sehmi KS, McLeod D. Abortive neovascular outgrowths discovered during vitrectomy for diabetic vitreous haemorrhage. Graefes Arch Clin Exp Ophthalmol. 1989;227:237–40.

    Article  PubMed  CAS  Google Scholar 

  34. Hiscott P, Cooling RJ, Rosen P, et al. The pathology of abortive neovascular outgrowths from the retina. Graefes Arch Clin Exp Ophthalmol. 1992;230:531–6.

    Article  PubMed  CAS  Google Scholar 

  35. Sundberg C, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol. 2001;158:1145–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Kishi S, Shimizu K. Clinical manifestations of posterior precortical vitreous pocket in proliferative diabetic retinopathy. Ophthalmology. 1993;100:225–9.

    Article  PubMed  CAS  Google Scholar 

  37. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.

    Article  PubMed  CAS  Google Scholar 

  38. Smith G, McLeod D, Foreman D, Boulton M. Immunolocalisation of the VEGF receptors FLT-1, KDR, and FLT-4 in diabetic retinopathy. Br J Ophthalmol. 1999;83:486–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Reardon AJ, et al. Identification in vitreous and molecular cloning of opticin, a novel member of family of leucine-rich repeat proteins of the extracellular matrix. J Biol Chem. 2000;275:2123–9.

    Article  PubMed  CAS  Google Scholar 

  41. Le Goff MM, Sutton MJ, Slevin M, et al. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J Biol Chem. 2012;287:28027–36.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A. 1996;93:9764–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Pe'er J, Folberg R, Itin A, et al. Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. Br J Ophthalmol. 1996;80:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pournaras CJ, Miller JW, Gragoudas ES, et al. Systemic hyperoxia decreases vascular endothelial growth factor gene expression in ischemic primate retina. Arch Ophthalmol. 1997;115:1553–8.

    Article  PubMed  CAS  Google Scholar 

  45. Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A. 1995;92:905–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David McLeod MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McLeod, D. (2014). IV.C. Vitreous and Iris Neovascularization. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics