Skip to main content

III.L. Proliferative Diabetic Vitreoretinopathy

  • Chapter
  • First Online:
Vitreous

Abstract

This chapter reviews the pathogenesis of proliferative diabetic vitreoretinopathy (PDVR) and presents recommendations for its clinical staging. Although numerous biochemical mediators may be responsible for the pathogenesis of PDVR, there is no consensus about the biochemical pathway(s) responsible for the progression of PDVR. Among the known and most studied mediators is vascular endothelial growth factor (VEGF) [18]. Since the thickened posterior vitreous cortex is one of the main components in proliferative diabetic retinopathy (PDR) causing the subsequent development of retinal proliferations, shrinkage of the diabetic posterior vitreous cortex leads to traction retinal detachment. Although several classifications are described in the literature, the classification suggested herein is important in the clinical assessment of disease severity, the communication about the disease state, and the evaluation of therapy. A new morphological classification of PDVR is presented which emphasizes the role of vitreous, hence the name PDVR. Moreover, this classification reliably predicts the surgical outcome in advanced stages of PDVR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiba J, Ueno N, Chakrabarti B. Molecular mechanisms of posterior vitreous detachment. Graefes Arch Clin Exp Ophthalmol. 1993;231:408–12.

    Article  PubMed  CAS  Google Scholar 

  2. Akiba J, Kakehashi A, Ueno N, Tano Y, Chakrabati B. Serum-induced collagen gel contraction. Graefes Arch Clin Exp Ophthalmol. 1995;233:430–4.

    Article  PubMed  CAS  Google Scholar 

  3. Blankenship GW, Machemer R. Long-term diabetic vitrectomy results. Report of 10 year follow-up. Ophthalmology. 1985;92:503–6.

    Article  PubMed  CAS  Google Scholar 

  4. Casaroli Marano RP, Vilaró S. The role of fibronectin, laminin, vitronectin and their receptors on cellular adhesion in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1994;35:2791–803.

    PubMed  CAS  Google Scholar 

  5. Chantelau E, Kohner EM, Seppel T, Schonau E, Althaus C. Elevation of serum IGF-1 precedes proliferative diabetic retinopathy in Mauriac’s syndrome. Br J Ophthalmol. 1997;81:169–70.

    PubMed  CAS  Google Scholar 

  6. Costa Ede P, Rodrigues EB, Farah ME, Sebag J, Meyer CH. Novel vitreous modulators for pharmacologic vitreolysis in the treatment of diabetic retinopathy. Curr Pharm Biotechnol. 2011;12:410–22.

    Article  PubMed  Google Scholar 

  7. Diabetic Retinopathy Study Research Group. Report 7: a modification of the Airlie-House-classification of diabetic retinopathy. Invest Ophthalmol Vis Sci. 1981;21:210–26.

    Google Scholar 

  8. Diabetic Retinopathy Vitrectomy Study Research Group. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy: two-year results of a randomized trial. Diabetic Retinopathy Vitrectomy Study report 2. Arch Ophthalmol. 1985;103:1644–52.

    Article  Google Scholar 

  9. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie-House-classification. ETDRS report No 10. Ophthalmology. 1991;98:786–806.

    Article  Google Scholar 

  10. Faulborn J, Bowald S. Microproliferations in proliferative diabetic retinopathy and their relationship to vitreous: corresponding light and electron microscopic studies. Graefes Arch Clin Exp Ophthalmol. 1985;223:130–8.

    Article  PubMed  CAS  Google Scholar 

  11. Gentile RC, Milman T, Eliott D, Romero JM, McCormick SA. Taut internal limiting membrane causing diffuse diabetic macular edema after vitrectomy: clinicopathological correlation. Ophthalmologica. 2011;226:64–70.

    Article  PubMed  Google Scholar 

  12. Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia. 1999;42:728–36.

    Article  PubMed  CAS  Google Scholar 

  13. Hammes HP, Kerner W, Hofer S, Kordonouri O, Raile K, Holl RW, DPV-Wiss Study Group. Diabetic retinopathy in type 1 diabetes-a contemporary analysis of 8,784 patients. Diabetologia. 2011;54:1977–84.

    Article  PubMed  CAS  Google Scholar 

  14. Harbour JW, Smiddy WE, Flynn Jr HW, Rubsamen PE. Vitrectomy for diabetic macular edema associated with a thickened and taut posterior hyaloid membrane. Am J Ophthalmol. 1996;121:405–13.

    Article  PubMed  CAS  Google Scholar 

  15. Hesse L, Heller G, Kraushaar N, Wesp A, Schroeder B, Kroll P. The predictive value of a classification for proliferative diabetic vitreoretinopathy. Klin Monatsbl Augenheilkd. 2002;219:46–9.

    Article  PubMed  Google Scholar 

  16. Hörle S, Kroll P. Evidence-based therapy of diabetic retinopathy. Ophthalmologica. 2007;221:132–41.

    Article  Google Scholar 

  17. Hwang JC, Sharma AG, Eliott D. Fellow eye vitrectomy for proliferative diabetic retinopathy in an inner city population. Br J Ophthalmol. 2013;97:297–301.

    Article  PubMed  Google Scholar 

  18. Jain A, Saxena S, Khanna VK, Shukla RK, Meyer CH. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis. 2013;19:1760–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Khono T, Sorgente N, Ishibashi T, Goodnight R, Ryan SJ. Immunofluorescent studies of fibrinogen and laminin in the human eye. Invest Ophthalmol Vis Sci. 1987;28:506–14.

    Google Scholar 

  20. Khono T, Sorgente N, Goodnight R, Ryan SJ. Alterations in the distribution of fibrinoctin and laminin in diabetic human eye. Invest Ophthalmol Vis Sci. 1987;28:515–21.

    Google Scholar 

  21. Klein R, Klein BEK, Moss SE, et al. The Wisconsin Epidemiological Study of Diabetic Retinopathy. IX. Four-year incidence and progression of diabetic retinopathy when age of diagnosis is less than 30 years. Arch Ophthalmol. 1989;107:237–43.

    Article  PubMed  CAS  Google Scholar 

  22. Klein R, Myers CE, Lee KE, Klein BE. 15-year cumulative incidence and associated risk factors for retinopathy in nondiabetic persons. Arch Ophthalmol. 2010;128:1568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Klein R, Lee KE, Gangnon RE, Klein BE. The 25-year incidence of visual impairment in type 1 diabetes mellitus the wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology. 2010;117:63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kroll P, Meyer-Rüsenberg HW, Busse H. Recommendation for staging of proliferative diabetic retinopathy. Fortschr Ophthalmol. 1987;84:360–3.

    PubMed  CAS  Google Scholar 

  25. Kroll P, Wiegand W, Schmid J. Vitreopapilary traction in proliferative diabetic vitreoretinopathy. Br J Ophthalmol. 1999;83:261–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kroll P, Rodrigues EB, Hörle S. Pathogenesis and classification of proliferative diabetic vitreoretinopathy. Ophthalmologica. 2007;221:78–94.

    Article  PubMed  Google Scholar 

  27. Lecaire TJ, Palta M, Klein R, Klein BE, Cruickshanks KJ. Assessing progress in retinopathy outcomes in type 1 diabetes: comparing findings from the Wisconsin Diabetes Registry Study and the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Diabetes Care. 2013;36:631–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leuenberger S, Faulborn J, Gülecek O. Histologische Untersuchungen über die Auswirkung der Lichtkoagulation der Netzhaut auf den Glaskörper. Klin Mbl Augenheilk. 1985;186:272–4.

    Article  PubMed  CAS  Google Scholar 

  29. Lewis H, Abrams GW, Blumenkranz MS, Campo RV. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology. 1992;99:753–9.

    Article  PubMed  CAS  Google Scholar 

  30. Meyer CH, Zaki NV, Mennel S, Hörle S, Schmidt JC, Kroll P. Verlauf der diabetischen Retinopathie bei einem Zwillingspaar 5 Jahre nach Pankreas-Transplantation. Spektrum der Augenheilkunde. 2005;19:183–7.

    Article  Google Scholar 

  31. Meyer CH, Kroll P, Hammes HP. Does insulin glargin (lantus) lead to a progression in diabetic retinopathy? Klin Monbl Augenheilkd. 2005;222:353–4.

    Article  PubMed  CAS  Google Scholar 

  32. Meyer CH. Current treatment approaches in diabetic macular edema. Ophthalmologica. 2007;221:118–31.

    Article  PubMed  Google Scholar 

  33. Meyer CH, Rodrigues EB, Maia M, Farah ME, Penha FM, Holz FG. Emerging pharmacotherapies for diabetic macular edema. Expert Opin Emerg Drugs. 2007;12:591–603.

    Article  PubMed  Google Scholar 

  34. Meyer CH, Schmidt JC, Mennel S, Kroll P. Functional and anatomical results of vitreopapillary traction after vitrectomy. Acta Ophthalmol Scand. 2007;85:221–2.

    Article  PubMed  Google Scholar 

  35. Norton EWD, Davis MD, Fine SL: The Airlie classification of diabetic retinopathy, in Goldberg MF, Fine SL (eds): Symposium on the Treatment of Diabetic Retinopathy, publication 1890. Federal Security Agency, Public Health Service, 1968, pp 7–22.

    Google Scholar 

  36. Olafsdottir E, Andersson DK, Dedorsson I, Stefánsson E. The prevalence of retinopathy in subjects with and without type 2 diabetes mellitus. Acta Ophthalmol. 2013 Mar;4.

    Google Scholar 

  37. Pendergast SD, Hassan TS, Williams GA, Cox MS, Margherio RR, Ferrone PJ, Garretson BR, Trese MT. Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyaloid. Am J Ophthalmol. 2000;130:178–86.

    Article  PubMed  CAS  Google Scholar 

  38. Quellec G, Lamard M, Cazuguel G, Bekri L, Daccache W, Roux C, Cochener B. Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. Invest Ophthalmol Vis Sci. 2011;52:8342–8.

    Article  PubMed  Google Scholar 

  39. Sato Y, Lee Z. The subclassification and longterm prognosis of preproliferative diabetic retinopathy. Jpn J Ophthalmol. 2002;46:323–9.

    Article  PubMed  Google Scholar 

  40. Schlingemann RO, Van Noorden CJ, Diekman MJ, Tiller A, Meijers JC, Koolwijk P, Wiersinga WM. VEGF Levels in plasma in relation to platelet activation, glycemic control, and microvascular complications in type 1 diabetes mellitus. Diabetes Care. 2013;36:1629–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sebag J, Buzney SM, Belyea DA, et al. Posterior vitreous detachment following panretinal laser photocoagulation. Graefes Arch Clin Exp Ophthalmol. 1990;228:5–8.

    Article  PubMed  CAS  Google Scholar 

  42. Sebag J. Age-related differences in the human vitreo-retinal interface. Arch Ophthalmol. 1991;109:966–71.

    Article  PubMed  CAS  Google Scholar 

  43. Sebag J, Buckingham B, Charles MA, Reiser K. Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol. 1992;110:1472–6.

    Article  PubMed  CAS  Google Scholar 

  44. Sebag J. Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol. 1993;231:257–60.

    Article  PubMed  CAS  Google Scholar 

  45. Sebag J, Nie S, Reiser KA, Charles MA, Yu NT. Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1994;35:2976–80.

    PubMed  CAS  Google Scholar 

  46. Sebag J. Diabetic vitreopathy. Ophthalmology. 1996;103:205–6.

    Article  PubMed  CAS  Google Scholar 

  47. Sebag J, Hageman GS. Interfaces. Eur J Ophthalmol. 2000;10:1–3.

    PubMed  CAS  Google Scholar 

  48. Sebag J. Is pharmacologic vitreolysis brewing? Retina. 2002;22:1–3.

    Article  PubMed  CAS  Google Scholar 

  49. Sebag J. Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc. 2005;103:473–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Sebag J. Vitreoschisis. Graefes Arch Clin Exp Ophthalmol. 2008;246:329–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Sebag J. Pharmacologic vitreolysis – premise and promise of the first decade. Retina. 2009;29:871–4.

    Article  PubMed  CAS  Google Scholar 

  52. Sebag J. Vitreoschisis in diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52:8455–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sebag J, Green WR. Vitreous and the vitreo-retinal interface. In: Ryan SJ, editor. Retina. St. Louis: Mosby; 2012.

    Google Scholar 

  54. Sévin R, Cuendet JF. Diabetic retinopathy and capillary resistance. Comparative study of various treatments. Bibl Ophthalmol. 1968;76:139–45.

    Google Scholar 

  55. Shea M. Early vitrectomy in proliferative diabetic retinopathy. Arch Ophthalmol. 1983;101:1204–5.

    Article  PubMed  CAS  Google Scholar 

  56. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller J. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular hole. N Engl J Med. 2012;367(7):606–15.

    Article  PubMed  CAS  Google Scholar 

  57. Stefansson E, Landers III MB, Wolbarsht ML. Increased retinal oxygen supply following Pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Stefánsson E, Machemer R, de Juan Jr E, McCuen 2nd BW, Peterson J. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol. 1992;113:36–8.

    Article  PubMed  Google Scholar 

  59. Stefánsson E. Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina. 2008;28:1175–6.

    Article  PubMed  Google Scholar 

  60. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;32:977–86.

    Google Scholar 

  61. Tozer K, Fink W, Sadun AA, Sebag J. Prospective three-dimensional analysis of structure and function in macular hole treated by pharmacologic vitreolysis. Retin Cases Brief Rep. 2013;7:57–61.

    Article  PubMed  Google Scholar 

  62. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylurease or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  63. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  PubMed Central  Google Scholar 

  64. Verstraeten TC, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA. Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol. 1993;111:849–54.

    Article  PubMed  CAS  Google Scholar 

  65. Vésteinsdóttir E, Björnsdóttir S, Hreidarsson AB, Stefánsson E. Risk of retinal neovascularization in the second eye in patients with proliferative diabetic retinopathy. Acta Ophthalmol. 2010;88:449–52.

    Article  PubMed  Google Scholar 

  66. Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism. Trends Biochem Sci. 1991;16:268–71.

    Article  PubMed  CAS  Google Scholar 

  67. Wilkinson CP, Ferries 3rd FL, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and macular edema disease severity scales. Ophthalmology. 2003;110:1677–81.

    Article  PubMed  CAS  Google Scholar 

  68. Yang XM, Yafai Y, Wiedemann P, Kuhrt H, Wang YS, Reichenbach A, Eichler W. Hypoxia-induced upregulation of pigment epithelium-derived factor by retinal glial (Müller) cells. J Neurosci Res. 2012;90:257–66.

    Article  PubMed  CAS  Google Scholar 

  69. Yoshida S, Nakama T, Ishikawa K, Arima M, Tachibana T, Nakao S, Sassa Y, Yasuda M, Enaida H, Oshima Y, Kono T, Ishibashi T. Antiangiogenic shift in vitreous after vitrectomy in patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53:6997–7003.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang ZY, Zhang XR. Effect of axial length on diabetic retinopathy. Ophthalmology. 2013;120:876–7.

    Article  PubMed  Google Scholar 

  71. Zehetner C, Kirchmair R, Kralinger M, Kieselbach G. Correlation of vascular endothelial growth factor plasma levels and glycemic control in patients with diabetic retinopathy. Acta Ophthalmol. 2013;91:e470–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kroll MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kroll, P., Rodrigues, E.B., Meyer, C.H. (2014). III.L. Proliferative Diabetic Vitreoretinopathy. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics