Skip to main content

II.F. To See the Invisible: The Quest of Imaging Vitreous

  • Chapter
  • First Online:
Vitreous

Abstract

Imaging vitreous is an attempt to view what is by design invisible (Figure II.F-1). The inability to adequately image vitreous hinders a more complete understanding of its normal structure and function, its role in ocular health, and how things change in aging and disease. As described by Duke-Elder [1], the theories of human anatomy that were prevalent during the mid-eighteenth century proposed that the vitreous is composed of “loose and delicate filaments surrounded by fluid,” a description that is remarkably close to present-day concepts. During the eighteenth and nineteenth centuries, there were no less than four very different theories of vitreous structure: in 1741 Demours proposed the alveolar theory; in 1780 Zinn offered the concentric, lamellar configuration theory; in 1845 Hannover suggested the radial sector theory; and in 1848 Sir William Bowman proposed the fibrillar theory, later championed by Retzius and Szent-Gyorgi. Unfortunately, as pointed out by Redslob [2], the techniques employed in all these studies were flawed by artifacts that biased the results of the investigations, since they employed acidic tissue fixatives that precipitated what we recognize today as the glycosaminoglycans, hyaluronan. Thus, the development of slit-lamp biomicroscopy by Gullstrand in 1912 held great promise, as it was anticipated that this technique could enable imaging of vitreous structure without the introduction of fixation artifacts. Yet, as described by Redslob [2], a varied set of descriptions resulted over the years, ranging from a fibrous structure to sheets, “chain-linked fences,” and various other interpretations. This problem has even persisted in more recent investigations. Eisner [3] described “membranelles”; Worst [4] “cisterns”; Sebag and Balazs [5] “fibers”; and Kishi and Shimizu [6] “pockets” in the vitreous [7].

“Vision is the art of seeing what is invisible to others.” Jonathan Swift (1667–1745)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Allvar Gullstrand won the 1911 Nobel Prize for Physiology or Medicine, the only Nobel Prize ever awarded for work in Ophthalmology. [as cited by Ehinger, Grzybowski A. Allvar Gullstrand (1862-1930) - the gentleman with the lamp. Acta Ophthalmol. 2011;89(8):701–8].

References

  1. Duke-Elder W. The nature of the vitreous body. Br J Opthalmol. 1930;14:6.

    Google Scholar 

  2. Redslob E. Le corps vitre. Paris: Masson; 1932.

    Google Scholar 

  3. Eisner G. Biomicroscopy of the peripheral fundus. New York: Springer; 1973.

    Book  Google Scholar 

  4. Worst J. Cisternal systems of the fully developed vitreous body in the young adult. Trans Opthalmol Soc U K. 1977;97:550–4.

    CAS  Google Scholar 

  5. Sebag J, Balazs E. Morphology and ultrastructure of human vitreous fibers. Invest Opthalmol Vis Sci. 1989;30:1867–71.

    CAS  Google Scholar 

  6. Kishi S, Shimizu K. Posterior precortical vitreous pocket. Arch Opthalmol. 1990;108:979–82.

    Article  CAS  Google Scholar 

  7. Sebag J. Letter to the editor. Arch Opthalmol. 1991;190:1059.

    Article  Google Scholar 

  8. Foulds W. Is your vitreous really necessary? The role of the vitreous in the eye with particular reference to retinal attachment, detachment and the mode of action of vitreous substitutes. Eye. 1987;1:641–64.

    Article  PubMed  Google Scholar 

  9. Sebag J. The Vitreous: Structure, Function and Pathobiology. New York: Springer; 1989.

    Book  Google Scholar 

  10. Ayad S, Weiss J. A new look at vitreous humour collagen. Biochem J. 1984;218:835–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Rest MV. Type IX collagen. Structure and Function of Collagen Types. New York: Academic; 1987. p. 195–221.

    Google Scholar 

  12. Schmut O, Mallinger R, Paschke E. Studies on a distinct fraction of bovine vitreous body collagen. Graefes Arch Clin Exp Ophthalmol. 1984;221:286–9.

    Article  PubMed  CAS  Google Scholar 

  13. Eyre D, Apon S, Wu J, et al. Collagen type IX: Evidence for covalent linkages to type II collagen in cartilage. Fed Eur Biochem Soc. 1987;220:337–41.

    Article  CAS  Google Scholar 

  14. Wright D, Mayne R. Vitreous humor of chicken contains two fibrillar systems: An analysis of their structure. J Ultrastr Mol Struct Res. 1988;100:224–34.

    Article  CAS  Google Scholar 

  15. Stitt AW, Moore JE, Sharkey JA, et al. Advanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci. 1998;39(13):2517–23.

    PubMed  CAS  Google Scholar 

  16. Sebag J. Classifying posterior vitreous detachment: A new way to look at the invisible. Br J Ophthalmol. 1997;81:521.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Packer A, Newsome D. Practical guidelines for posterior segment biomicroscopy. In: Retinal Dystrophies and Degenerations. New York: Raven; 1988. p. 1–4.

    Google Scholar 

  18. Jalkh A, Trempe C. Clinical methods of vitreous examination. In: The Vitreous and Vitreoretinal Interface. New York: Springer; 1987. p. 73–83.

    Chapter  Google Scholar 

  19. Boruchoff S. Corneo-vitreal contact. Trans Ophthalmol Soc U K. 1975;95:417–21.

    PubMed  CAS  Google Scholar 

  20. Jaffe N. The Vitreous in Clinical Ophthalmology. St Louis: Mosby; 1968.

    Google Scholar 

  21. Pruett R. Retinitis pigmentosa: Clinical observations and correlations. Trans Am Ophthalmol Soc. 1983;81:693–735.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Lacqua H, Machemer R. Clinical-pathologic correlation in massive preretinal proliferation. Am J Ophthalmol. 1975;80:913–29.

    Article  Google Scholar 

  23. Awan K, Thurmayan M. Changes in the contralateral eye in uncomplicated persistent hyperplastic primary vitreous. Am J Ophthalmol. 1985;99:122–4.

    Article  PubMed  CAS  Google Scholar 

  24. Schepens C, Trempe C, Takahashi M. Atlas of Vitreous Biomicroscopy. Boston: Butterworth-Heineman; 1999.

    Google Scholar 

  25. Newsome D, Linsemayer T, Trelstad R. Vitreous body collagen – evidence for a dual origin from the neural retina and hyalocytes. J Cell Biol. 1976;71:59–67.

    Article  PubMed  CAS  Google Scholar 

  26. El-Bayadi G. A new method of slit-lamp micro-ophthalmoscopy. Br J Ophthalmol. 1953;37:625–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Schepens C. Methods of Examination in Retinal Detachment and Allied Diseases. Philadelphia: WB Saunders; 1983.

    Google Scholar 

  28. Sebag J. Vitreous pathobiology. Clinical Ophthalmology. Philadelphia: JB Lippincott Co; 1992.

    Google Scholar 

  29. Buzney S, Welter J, Furukawa H, et al. Examination of the vitreous. A comparison of biomicroscopy using the Goldmann and El-Bayadi-Kajiura lenses. Ophthalmology. 1985;92(12):1745–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kakehashi A, Akiba J, Trempe C. Vitreous photography with a +90 diopter double aspheric preset lens vs the El Bayadi-Kajiura preset lens. Arch Ophthalmol. 1991;109:962–5.

    Article  PubMed  CAS  Google Scholar 

  31. Jaffe N. Methods of examination of the vitreous and fundus. In: The Vitreous in Clinical Ophthalmology. St Louis: Mosby; 1968. p. 75–82.

    Google Scholar 

  32. Mainster M, Grossman J, Erickson P, et al. Retinal laser lenses: Magnification, spot size, and field of view. Br J Ophthalmol. 1990;74:177–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Mainster M, Timberlake G, Webb R, Hughes G. Scanning laser ophthalmology. Clinical applications. Ophthalmology. 1982;89:852–7.

    Article  PubMed  CAS  Google Scholar 

  34. Sebag J. Vitreous: The resplendent enigma. Br J Ophthalmol. 2009;93(8):989–91.

    Article  PubMed  CAS  Google Scholar 

  35. Sebag J, Gupta P, Rosen R, et al. Macular holes and macular pucker: The role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmology. Trans Am Ophthalmol Soc. 2007;105:121–31.

    PubMed  PubMed Central  Google Scholar 

  36. Sebag J, Wang M, Nguyen D, Sadun A. Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc. 2009;107:35–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Huang D, Swanson E, Lin C, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Fercher AF, Hitzenberger CK, Drexler W, et al. In vivo optical coherence tomography. Am J Ophthalmol. 1993;116:113–4.

    Article  PubMed  CAS  Google Scholar 

  39. Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.

    Article  PubMed  CAS  Google Scholar 

  40. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett. 1994;19:590–2.

    Article  PubMed  CAS  Google Scholar 

  41. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–32.

    Article  PubMed  CAS  Google Scholar 

  42. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586–96.

    Article  PubMed  CAS  Google Scholar 

  43. Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;11:1584–9.

    Article  Google Scholar 

  44. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Optics Commun. 1995;117:43–8.

    Article  CAS  Google Scholar 

  45. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7(3):457–63.

    Article  PubMed  Google Scholar 

  46. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  PubMed  CAS  Google Scholar 

  47. Potsaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Expr. 2010;8(19):20029–48.

    Article  Google Scholar 

  48. Lim H, Mujat M, Kerbage C, et al. High speed imaging of human retina in vivo with swept-source optical coherence tomography. Opt Expr. 2006;14(26):12902–8.

    Article  CAS  Google Scholar 

  49. Srinivasan VJ, Adler DC, Chen Y, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49(11):5103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:3102–7.

    Article  PubMed  Google Scholar 

  51. Kishi S, Shimizu K. Posterior precortical vitreous pocket. Arch Ophthalmol. 1990;108(7):979–82.

    Article  PubMed  CAS  Google Scholar 

  52. Itakura H, Kishi S. Aging changes of vitreomacular interface. Retina. 2011;31:1400–4.

    Article  PubMed  Google Scholar 

  53. Grulkowski I, Liu JJ, Zhang JY. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology. 2013;120:2184–90.

    Article  PubMed  Google Scholar 

  54. Gupta P, Sadun A, Sebag J. Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina. 2008;28:447–52.

    Article  PubMed  Google Scholar 

  55. Krebs I, Brannath W, Glittenberg C, et al. Posterior vitreomacular adhesion: A potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol. 2007;144:741–6.

    Article  PubMed  Google Scholar 

  56. Robison C, Krebs I, Binder S, et al. Vitreo-macular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol. 2009;148:79–82.

    Article  PubMed  Google Scholar 

  57. Sebag J. Vitreoschisis. Graefes Arch Clin Exp Ophthalmol. 2008;246:329–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Wang M, Nguyen D, Hindoyan N, et al. Vitreo-papillary adhesion in macular hole and macular pucker. Retina. 2009;29:644–50.

    Article  PubMed  Google Scholar 

  59. Charles S. Vitreous Microsurgery. Baltimore: Williams & Wilkins; 1981.

    Google Scholar 

  60. Mundt G, Hughes W. Ultrasonics in ocular diagnostics. Am J Ophthalmol. 1956;41:488–98.

    Article  PubMed  Google Scholar 

  61. Baum G, Greenwood I. The application of ultrasonic locating techniques to ophthalmology, Part I: Reflective properties. Am J Ophthalmol. 1958;46:319–29.

    Article  PubMed  CAS  Google Scholar 

  62. Coleman D, Carlin B. A new system for visual axis measurements in the human eye using ultrasound. Arch Ophthalmol. 1967;77:124–7.

    Article  PubMed  CAS  Google Scholar 

  63. Coleman D, Konig W, Katz L. A hand-operated ultrasound scan system for ophthalmic evaluation. Am J Ophthalmol. 1969;68:256–63.

    Article  PubMed  CAS  Google Scholar 

  64. Bronson NR, Turner FT. A simple B-scan ultrasonoscope. Arch Ophthalmol. 1973;90:237–8.

    Article  PubMed  Google Scholar 

  65. Pavlin C, Sherar M, Foster F. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50.

    Article  PubMed  CAS  Google Scholar 

  66. Ketterling J, Lizzi F, Aristizabal O, Turnbull D. Design and fabrication of a 40-MHz annular array transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(4):672–81.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Silverman R, Ketterling J, Coleman D. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer. Ophthalmology. 2007;114(4):816–22.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Silverman R, Ketterling J, Mamou J, Coleman D. Improved high-resolution ultrasonic imaging of the eye. Arch Ophthalmol. 2008;126(1):94–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ketterling J, Filoux E. Synthetic-focusing strategies for real-time annular-array imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(8):1830–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mamou J, Ketterling J, Silverman R. Chirp-coded excitation with a high-frequency ultrasound annular array. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(2):508–13.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Silverman R, Ketterling J, Mamou J, Lloyd H, Filoux E, Coleman D. Pulse-encoded ultrasound imaging of the vitreous with an annular array. Ophthalmic Surg Lasers Imag. 2012;43(1):82–6.

    Article  Google Scholar 

  72. Oksala A. Ultrasonic findings in the vitreous body at various ages. Graefes Arch Clin Exp Ophthalmol. 1978;207:275–80.

    Article  CAS  Google Scholar 

  73. Chu T, Lopez P, Cano M, et al. Posterior vitreoschisis. An echographic finding in proliferative diabetic retinopathy. Ophthalmology. 1996;103:315–22.

    Article  PubMed  CAS  Google Scholar 

  74. Sebag J, Buckingham B, Charles M, Reiser K. Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol. 1992;110:1472–6.

    Article  PubMed  CAS  Google Scholar 

  75. Rossi T, Querzoli G, Pasqualitto G, et al. Ultrasound imaging velocimetry of the human vitreous. Exp Eye Res. 2012;99:98–104.

    Article  PubMed  CAS  Google Scholar 

  76. Sebag J, Yee K, Huang L, Wa C, Sadun A. Vitrectomy for floaters – prospective efficacy analyses and retrospective safety profile. Retina. 2014;34(6):1062–8.

    Article  PubMed  Google Scholar 

  77. Mamou J, Yee KMP, Wa CA. Quantitative ultrasonography of vitreous correlates with contrast sensitivity in patients with floaters. Invest Ophthalmol Vis Sci. submitted for publication.

    Google Scholar 

  78. Fanea L, Fanan A. Review: Magnetic resonance imaging techniques in ophthalmology. Molec Vis. 2012;18:2538–60.

    PubMed  PubMed Central  Google Scholar 

  79. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225:89–93.

    Article  PubMed  CAS  Google Scholar 

  80. Sebag J. Ageing of the vitreous. Eye. 1987;1:254–62.

    Article  PubMed  Google Scholar 

  81. Aguayo J, Glaser B, Mildyan A, et al. Study of vitreous liquefaction by NMR spectroscopy and imaging. Invest Ophthalmol Vis Sci. 1985;26:692–7.

    PubMed  CAS  Google Scholar 

  82. Sebag J. Pharmacologic vitreolysis. Retina. 1998;18:1–3.

    Article  PubMed  CAS  Google Scholar 

  83. Berkowitz BA, McDonald C, Ito Y, et al. Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med. 2001;46:412–6.

    Article  PubMed  CAS  Google Scholar 

  84. Simpson AR, Dowell NG, Jackson TL, Tofts PS, Hughes EH. Measuring the effect of pars plana vitrectomy on vitreous oxygenation using magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2013;54(3):2028–34.

    Article  PubMed  Google Scholar 

  85. Sebag J, Nie S, Reiser K, et al. Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1994;35:2976–80.

    PubMed  CAS  Google Scholar 

  86. Ansari R, Dunker S, Suh K, et al. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering. Exp Eye Res. 2001;73:859–66.

    Article  PubMed  CAS  Google Scholar 

  87. Datiles MB 3rd, Ansari RR, Suh KI, Vitale S, Reed GF, Zigler JS Jr, Ferris FL 3rd. Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch Ophthalmol. 2008;126(12):1687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sebag J, Ansari R, Dunker S, Suh K. Dynamic light scattering of diabetic vitreopathy. Diabetes Technol Ther. 1999;1:169–76.

    Article  PubMed  CAS  Google Scholar 

  89. Sebag J. Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol. 1993;231:257–60.

    Article  PubMed  CAS  Google Scholar 

  90. Sebag J. Diabetic vitreopathy. Ophthalmology. 1996;103:205–6.

    Article  PubMed  CAS  Google Scholar 

  91. Sebag J, Ansari R, Suh K. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245:576–80.

    Article  PubMed  CAS  Google Scholar 

  92. Matsuura T, Hara Y, Taketani F, et al. Volume phase transition of bovine vitreous body in vitro and determination of its dynamics. Biomacromolecules. 2004;5:1296–302.

    Article  PubMed  CAS  Google Scholar 

  93. Annaka M, Okamoto M, Matsuura T, et al. Dynamic light scattering study of salt effect on phase behavior of pig vitreous body and its microscopic implication. J Phys Chem B. 2007;111:8411–8.

    Article  PubMed  CAS  Google Scholar 

  94. Sebag J, Balazs EA. Pathogenesis of cystoid macular edema: Anatomic consideration of vitreoretinal adhesions. Surv Ophthalmol. 1984;28(Suppl):493.

    Article  PubMed  Google Scholar 

  95. Eisner G. Zur anatomie des glaskorpers. Alb v Graefes Arch Klin Exp Ophthalmol. 1975;93:33–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag MD, FACS, FRCOphth, FARVO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sebag, J., Silverman, R.H., Coleman, D.J. (2014). II.F. To See the Invisible: The Quest of Imaging Vitreous. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics