Skip to main content

Innate and Adaptive Immune-Mediated Neuroinflammation and Neurodegeneration in Parkinson’s Disease

  • Chapter
  • First Online:
  • 2033 Accesses

Abstract

Innate and adaptive immunity affect the pathogenesis of Parkinson’s disease (PD). In particular, the activation of microglia that feed neuroinflammation and oxidative stress influences the degeneration of dopaminergic neurons along the nigrostriatal axis during disease. Activated microglia that proximate degenerating neurons within the substantia nigra are a hallmark of PD. Other PD hallmarks include neuronal Lewy body inclusions composed primarily of aggregated ubiquitin and neuronal proteins. Under inflammatory conditions, oxidative or nitrative modifications of neuronal proteins, such as ?-synuclein, lead to misfolding and formation of neurotoxic species that accumulate within the neuron. Release of misfolded proteins from injured or dead neurons intensifies neuroinflammation and neuronal injury within the surrounding area. Moreover, once in the peripheral immune compartments, processing and presentation of modified proteins, such as nitrated ?-synuclein by dendritic cells, induce effector T cells to those nitrated epitopes that act as neoantigens. Robust effector T cell immune responses against nitrated or modified self-proteins and migration of those effector T cells to inflammatory sites exacerbate neuroinflammation and dopaminergic neurodegeneration, which lead to accelerated disease progression. The links between T cell immunity and nigrostriatal neurodegeneration are supported by laboratory and animal models as well as human investigations of immune-associated biomarkers in the spinal fluid, peripheral blood, and brain tissue of patients with idiopathic or familial forms of PD. Regulatory T cells modulate both innate and effector T cell-mediated immunity to attenuate neuroinflammation and alleviate neurodegeneration along the nigrostriatal axis. Thus, harnessing proinflammatory and neurotoxic effector immune responses with drugs, vaccination, or immunomodulation affords promising therapeutic strategies either alone as an interdictory therapy or in combination as adjunctive therapy in the context of neuronal replacement. Herein immune-mediated inflammation, oxidative stress, and neurodegeneration as linked to PD pathogenesis are examined as well as the potential benefits of efficacious immune regulatory control over those neurotoxic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PD:

Parkinson’s disease

SNpc:

Substantia nigra pars compacta

LB:

Lewy body

α-syn:

α-Synuclein

TNF:

Tumor necrosis factor

LPS:

Lipopolysaccharide

IFN-γ:

Interferon gamma

CD40L:

CD40 ligand

tPA:

Tissue plasminogen activator

MMP-3:

Matrix metalloproteinase-3

β-Amyloid:

Amyloid beta

MHC:

Major histocompatibility complex

ADCC:

Antibody-dependent cell cytotoxicity

LFA-1:

Lymphocyte function-associated antigen-1

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

iNOS:

Inducible nitric oxide synthase

COX1:

Cyclooxygenase-1

COX 2:

Cyclooxygenase-2

NADPH:

Nicotinamide adenine dinucleotide phosphate

HLA-DR:

Human lymphocyte antigen-DR

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

6-OHDA:

6-Hydroxydopamine

NO:

Nitric oxide

PGE2:

Prostaglandin E2

PRRs:

Pattern recognition receptors

PAMPs:

Pathogen-associated molecular patterns

DAMPs:

Damage-associated molecular patterns

TCR:

T cell receptor

APCs:

Antigen-presenting cells

Th1:

Type 1 T helper

Th2:

Type 2 T helper

Th17:

Type 17 T helper

HSP:

Heat shock protein

GFAP:

Glial fibrillar acidic protein

NGF:

Nerve growth factor

BBB:

Blood-brain barrier

RANTES:

Regulated on activation normal T cell expressed and secreted

Tregs:

Regulatory T cells

N-α-syn:

Nitrated α-syn

Teffs:

Effector T cells

GDNF:

Glial cell-derived neurotrophic factor

nTregs:

Natural Tregs

IPEX:

Immune-dysregulation polyendocrinopathy, enteropathy X-linked

iTregs:

Induced or inducible Tregs

TGF-β:

Transforming growth factor-β

NF-κB:

Nuclear factor-kappa B

NSAIDs:

Nonsteroidal anti-inflammatory drugs

MAP:

Mitogen-activated protein

MCP-1:

Monocyte chemotactic protein-1

BDNF:

Brain-derived neurotrophic factor

VIP:

Vasoactive intestinal peptide

GM-CSF:

Granulocyte/macrophage colony-stimulating factor

References

  1. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.

    CAS  PubMed  Google Scholar 

  2. Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord. 2003;18(1):19–31.

    PubMed  Google Scholar 

  3. Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am. 2009;29(2):321–37.

    PubMed  Google Scholar 

  4. Appel SH, Beers DR, Henkel JS. T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol. 2010;31(1):7–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Peterson LJ, Flood PM. Oxidative stress and microglial cells in Parkinson’s disease. Mediators Inflamm. 2012;2012:401264.

    PubMed Central  PubMed  Google Scholar 

  6. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science. 2001;293(5528):263–9.

    CAS  PubMed  Google Scholar 

  7. Wan OW, Chung KK. The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS One. 2012;7(6):e38545.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a009381.

    PubMed Central  PubMed  Google Scholar 

  9. Hutter-Saunders JA, Mosley RL, Gendelman HE. Pathways towards an effective immunotherapy for Parkinson’s disease. Expert Rev Neurother. 2011;11(12):1703–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–218.

    CAS  PubMed  Google Scholar 

  11. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4(2):160–4.

    CAS  PubMed  Google Scholar 

  12. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290(5493):985–9.

    CAS  PubMed  Google Scholar 

  13. Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol Neurodegener. 2010;5:43.

    PubMed Central  PubMed  Google Scholar 

  14. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 2009;41(10):2015–24.

    CAS  PubMed  Google Scholar 

  15. Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, et al. Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res. 2005;134(1):84–102.

    CAS  PubMed  Google Scholar 

  16. Cavallarin N, Vicario M, Negro A. The role of phosphorylation in synucleinopathies: focus on Parkinson’s disease. CNS Neurol Disord Drug Targets. 2010;9(4):471–81.

    CAS  PubMed  Google Scholar 

  17. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science. 1996;274(5290): 1197–9.

    CAS  PubMed  Google Scholar 

  18. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    CAS  PubMed  Google Scholar 

  19. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18(2):106–8.

    CAS  PubMed  Google Scholar 

  20. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–73.

    CAS  PubMed  Google Scholar 

  21. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364(9440):1167–9.

    CAS  PubMed  Google Scholar 

  22. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841.

    CAS  PubMed  Google Scholar 

  23. Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem. 2007;103(1):17–37.

    CAS  PubMed  Google Scholar 

  24. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem. 1999;274(14): 9843–6.

    CAS  PubMed  Google Scholar 

  25. Li J, Uversky VN, Fink AL. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry. 2001;40(38):11604–13.

    CAS  PubMed  Google Scholar 

  26. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23(4): 474–83.

    PubMed  Google Scholar 

  27. Greenamyre JT, Hastings TG. Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science. 2004;304(5674):1120–2.

    CAS  PubMed  Google Scholar 

  28. Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38(3–4):277–301.

    CAS  PubMed  Google Scholar 

  29. Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, et al. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One. 2008;3(7):e2740.

    PubMed Central  PubMed  Google Scholar 

  30. Cao JJ, Li KS, Shen YQ. Activated immune cells in Parkinson’s disease. J Neuroimmune Pharmacol. 2011;6(3):323–9.

    PubMed  Google Scholar 

  31. Dawson TM. Non-autonomous cell death in Parkinson’s disease. Lancet Neurol. 2008;7(6):474–5.

    PubMed  Google Scholar 

  32. Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, et al. The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 2001;14(4):483–9.

    CAS  PubMed  Google Scholar 

  33. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–91.

    CAS  PubMed  Google Scholar 

  34. Ouchi Y, Yagi S, Yokokura M, Sakamoto M. Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord. 2009;15 Suppl 3:S200–4.

    PubMed  Google Scholar 

  35. Banati RB, Daniel SE, Blunt SB. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord. 1998;13(2):221–7.

    CAS  PubMed  Google Scholar 

  36. Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience. 2000;95(2):425–32.

    CAS  PubMed  Google Scholar 

  37. Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal. 2009;11(9):2151–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB. Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit. 2002;8(8):RA165–77.

    CAS  PubMed  Google Scholar 

  39. Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroimmunol. 2007;183(1–2):60–8.

    CAS  PubMed  Google Scholar 

  40. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8.

    CAS  PubMed  Google Scholar 

  41. abd-el-Basset E, Fedoroff S. Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res. 1995;41(2):222–37.

    CAS  PubMed  Google Scholar 

  42. Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L. CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells. J Immunol. 1999;162(3):1384–91.

    CAS  PubMed  Google Scholar 

  43. Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci. 2005;25(14):3701–11.

    CAS  PubMed  Google Scholar 

  44. Moller T, Hanisch UK, Ransom BR. Thrombin-induced activation of cultured rodent microglia. J Neurochem. 2000;75(4):1539–47.

    CAS  PubMed  Google Scholar 

  45. Suzumura A, Sawada M, Takayanagi T. Production of interleukin-12 and expression of its receptors by murine microglia. Brain Res. 1998;787(1):139–42.

    CAS  PubMed  Google Scholar 

  46. Tan J, Town T, Mori T, Wu Y, Saxe M, Crawford F, et al. CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci. 2000;20(20):7587–94.

    CAS  PubMed  Google Scholar 

  47. Tsirka SE. Clinical implications of the involvement of tPA in neuronal cell death. J Mol Med. 1997;75(5):341–7.

    CAS  PubMed  Google Scholar 

  48. Kosloski LM, Ha DM, Hutter JA, Stone DK, Pichler MR, Reynolds AD, et al. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem. 2010;114(5):1261–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, et al. Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem. 2008;104(6):1504–25.

    CAS  PubMed  Google Scholar 

  50. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.

    CAS  PubMed  Google Scholar 

  51. Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150(8):963–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res. 2006;6(5): 261–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2008;29(11):1690–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Aloisi F. Immune function of microglia. Glia. 2001;36(2):165–79.

    CAS  PubMed  Google Scholar 

  55. He Y, Le WD, Appel SH. Role of Fcgamma receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol. 2002;176(2):322–7.

    CAS  PubMed  Google Scholar 

  56. Phani S, Loike JD, Przedborski S. Neurodegeneration and Inflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S207–9.

    PubMed  Google Scholar 

  57. Brecknell JE, Dunnett SB, Fawcett JW. A quantitative study of cell death in the substantia nigra following a mechanical lesion of the medial forebrain bundle. Neuroscience. 1995;64(1):219–27.

    CAS  PubMed  Google Scholar 

  58. Revuelta M, Venero JL, Machado A, Cano J. Serotonin hyperinnervation in the adult rat ventral mesencephalon following unilateral transection of the medial forebrain bundle. Correlation with reactive microglial and astroglial populations. Neuroscience. 1999;91(2): 567–77.

    CAS  PubMed  Google Scholar 

  59. Sugama S, Cho BP, Degiorgio LA, Shimizu Y, Kim SS, Kim YS, et al. Temporal and sequential analysis of microglia in the substantia nigra following medial forebrain bundle axotomy in rat. Neuroscience. 2003;116(4):925–33.

    CAS  PubMed  Google Scholar 

  60. Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, et al. Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res. 2003;964(2):288–94.

    CAS  PubMed  Google Scholar 

  61. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL. Neuroprotective activities of CD4 + CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol. 2007;82(5):1083–94.

    CAS  PubMed  Google Scholar 

  62. Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P, et al. Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol. 2008;3(2):59–74.

    PubMed Central  PubMed  Google Scholar 

  63. Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol. 2010;184(5):2261–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol. 2009;182(7):4137–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Proteomic studies of nitrated alpha-synuclein microglia regulation by CD4+ CD25+ T cells. J Proteome Res. 2009;8(7): 3497–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3:S49–58. discussion S-60.

    CAS  PubMed  Google Scholar 

  67. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000;20(16):6309–16.

    CAS  PubMed  Google Scholar 

  68. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–70.

    CAS  PubMed  Google Scholar 

  69. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202(1–2):17–20.

    CAS  PubMed  Google Scholar 

  70. Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci. 1999;22:219–40.

    CAS  PubMed  Google Scholar 

  71. Schiefer J, Kampe K, Dodt HU, Zieglgansberger W, Kreutzberg GW. Microglial motility in the rat facial nucleus following peripheral axotomy. J Neurocytol. 1999;28(6):439–53.

    CAS  PubMed  Google Scholar 

  72. Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, et al. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem. 2005;280(11):10444–54.

    CAS  PubMed  Google Scholar 

  73. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–80.

    CAS  PubMed  Google Scholar 

  74. McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 2003;54(5):599–604.

    CAS  PubMed  Google Scholar 

  75. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100(9): 5473–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2007;29(11):1690–701.

    PubMed Central  PubMed  Google Scholar 

  77. Sekiyama K, Sugama S, Fujita M, Sekigawa A, Takamatsu Y, Waragai M, et al. Neuroinflammation in Parkinson’s disease and related disorders: a lesson from genetically manipulated mouse models of alpha-synucleinopathies. Parkinsons Dis. 2012;2012:271732.

    PubMed Central  PubMed  Google Scholar 

  78. Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis. 2009;36(2):269–79.

    CAS  PubMed  Google Scholar 

  79. Mills KH. TLR-dependent T, cell activation in autoimmunity. Nat Rev Immunol. 2011;11(12):807–22.

    CAS  PubMed  Google Scholar 

  80. McRae-Degueurce A, Rosengren L, Haglid K, Booj S, Gottfries CG, Granerus AC, et al. Immunocytochemical investigations on the presence of neuron-specific antibodies in the CSF of Parkinson’s disease cases. Neurochem Res. 1988;13(7):679–84.

    CAS  PubMed  Google Scholar 

  81. Dahlstrom A, Wigander A, Lundmark K, Gottfries CG, Carvey PM, McRae A. Investigations on auto-antibodies in Alzheimer’s and Parkinson’s diseases, using defined neuronal cultures. J Neural Transm Suppl. 1990;29:195–206.

    CAS  PubMed  Google Scholar 

  82. Kunas RC, McRae A, Kesselring J, Villiger PM. Antidopaminergic antibodies in a patient with a complex autoimmune disorder and rapidly progressing Parkinson’s disease. J Allergy Clin Immunol. 1995;96(5 Pt 1):688–90.

    CAS  PubMed  Google Scholar 

  83. Fiszer U, Fredrikson S, Czlonkowska A. Humoral response to hsp 65 and hsp 70 in cerebrospinal fluid in Parkinson’s disease. J Neurol Sci. 1996;139(1):66–70.

    CAS  PubMed  Google Scholar 

  84. Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem. 2007;101(3):749–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Yanamandra K, Gruden MA, Casaite V, Meskys R, Forsgren L, Morozova-Roche LA. Alpha-synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PLoS One. 2011;6(4):e18513.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gruden MA, Sewell RD, Yanamandra K, Davidova TV, Kucheryanu VG, Bocharov EV, et al. Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J Neuroimmunol. 2011;233(1–2):221–7.

    CAS  PubMed  Google Scholar 

  87. Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagala A, et al. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand. 2002;106(1):54–7.

    CAS  PubMed  Google Scholar 

  88. Poletaev AB, Morozov SG, Gnedenko BB, Zlunikin VM, Korzhenevskey DA. Serum anti-S100b, anti-GFAP and anti-NGF autoantibodies of IgG class in healthy persons and patients with mental and neurological disorders. Autoimmunity. 2000;32(1):33–8.

    CAS  PubMed  Google Scholar 

  89. Terryberry JW, Thor G, Peter JB. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol Aging. 1998;19(3):205–16.

    CAS  PubMed  Google Scholar 

  90. Elizan TS, Casals J, Yahr MD. Antineurofilament antibodies in postencephalitic and idiopathic Parkinson’s disease. J Neurol Sci. 1983;59(3):341–7.

    CAS  PubMed  Google Scholar 

  91. Karcher D, Federsppiel BS, Lowenthal FD, Frank F, Lowenthal A. Anti-neurofilament antibodies in blood of patients with neurological diseases. Acta Neuropathol. 1986;72(1):82–5.

    CAS  PubMed  Google Scholar 

  92. Appel SH, Smith RG, Alexianu M, Engelhardt J, Mosier D, Colom L, et al. Neurodegenerative disease: autoimmunity involving calcium channels. Ann N Y Acad Sci. 1994;747:183–94.

    CAS  PubMed  Google Scholar 

  93. Hong J, Li N, Zhang X, Zheng B, Zhang JZ. Induction of CD4+ CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A. 2005;102(18):6449–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G, et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res. 2009;6(2):144–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Depboylu C, Schafer MK, Arias-Carrion O, Oertel WH, Weihe E, Hoglinger GU. Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol. 2011;70(2):125–32.

    CAS  PubMed  Google Scholar 

  96. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, et al. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One. 2008;3(1):e1376.

    PubMed Central  PubMed  Google Scholar 

  98. Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101(25):9435–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol Exp (Wars). 1999;59(1):1–8.

    CAS  Google Scholar 

  100. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol. 1999;156(1):50–61.

    CAS  PubMed  Google Scholar 

  101. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, et al. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–9.

    CAS  PubMed  Google Scholar 

  102. Bas J, Calopa M, Mestre M, Mollevi DG, Cutillas B, Ambrosio S, et al. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol. 2001;113(1):146–52.

    CAS  PubMed  Google Scholar 

  103. Crucian B, Dunne P, Friedman H, Ragsdale R, Pross S, Widen R. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Clin Diagn Lab Immunol. 1995;2(2): 249–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand. 1994;90(3):160–6.

    CAS  PubMed  Google Scholar 

  105. Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y. Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol. 2001;58(10):1580–3.

    CAS  PubMed  Google Scholar 

  106. Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord. 2005;11(8):493–8.

    PubMed  Google Scholar 

  107. Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, et al. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand. 2007;116(6):374–9.

    CAS  PubMed  Google Scholar 

  108. Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, et al. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand. 2009;119(5): 332–7.

    CAS  PubMed  Google Scholar 

  109. Fiszer U, Mix E, Fredrikson S, Kostulas V, Olsson T, Link H. Gamma delta+ T cells are increased in patients with Parkinson’s disease. J Neurol Sci. 1994;121(1):39–45.

    CAS  PubMed  Google Scholar 

  110. Bennett JL, Stuve O. Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol. 2009;32(3):121–32.

    CAS  PubMed  Google Scholar 

  111. Blink SE, Miller SD. The contribution of gammadelta T cells to the pathogenesis of EAE and MS. Curr Mol Med. 2009;9(1):15–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ponomarev ED, Dittel BN. Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J Immunol. 2005;174(8):4678–87.

    CAS  PubMed  Google Scholar 

  113. Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol. 2012;7(4):927–38.

    PubMed Central  PubMed  Google Scholar 

  114. Ha D, Stone DK, Mosley RL, Gendelman HE. Immunization strategies for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S218–21.

    PubMed  Google Scholar 

  115. Aggarwal S, Xie MH, Maruoka M, Foster J, Gurney AL. Acinar cells of the pancreas are a target of interleukin-22. J Interferon Cytokine Res. 2001;21(12):1047–53.

    CAS  PubMed  Google Scholar 

  116. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    CAS  PubMed  Google Scholar 

  117. Monteleone G, Pallone F, Macdonald TT. Interleukin-21 as a new therapeutic target for immune-mediated diseases. Trends Pharmacol Sci. 2009;30(8):441–7.

    CAS  PubMed  Google Scholar 

  118. Hecker A, Kaufmann A, Hecker M, Padberg W, Grau V. Expression of interleukin-21, interleukin-21 receptor alpha and related type I cytokines by intravascular graft leukocytes during acute renal allograft rejection. Immunobiology. 2009;214(1):41–9.

    CAS  PubMed  Google Scholar 

  119. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human Th17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173–5.

    CAS  PubMed  Google Scholar 

  120. Appel SH. CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. J Clin Invest. 2009;119(1):13–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Yong VW. Prospects of repair in multiple sclerosis. J Neurol Sci. 2009;277 Suppl 1:S16–8.

    CAS  PubMed  Google Scholar 

  122. Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev. 2007;6(7):469–75.

    CAS  PubMed  Google Scholar 

  123. Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, et al. Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neurosci. 2005;25(7):1691–700.

    CAS  PubMed  Google Scholar 

  124. Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238(1):247–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.

    CAS  PubMed  Google Scholar 

  126. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002;39(8):537–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.

    CAS  PubMed  Google Scholar 

  128. Joetham A, Takeda K, Taube C, Miyahara N, Matsubara S, Koya T, et al. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol. 2007;178(3):1433–42.

    CAS  PubMed  Google Scholar 

  129. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4):589–601.

    CAS  PubMed  Google Scholar 

  130. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–62.

    CAS  PubMed  Google Scholar 

  131. Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A, et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med. 2006;203(3):505–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol. 2006;7(1):83–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Cederbom L, Hall H, Ivars F. CD4+ CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol. 2000;30(6):1538–43.

    CAS  PubMed  Google Scholar 

  134. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol. 1998;160(3):1212–8.

    CAS  PubMed  Google Scholar 

  135. Thornton AM, Shevach EM. Suppressor effector function of CD4+ CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164(1):183–90.

    CAS  PubMed  Google Scholar 

  136. Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008;23(16): 2303–6.

    PubMed  Google Scholar 

  137. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14(5):501–3.

    CAS  PubMed  Google Scholar 

  138. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14(5):504–6.

    CAS  PubMed  Google Scholar 

  139. Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med. 2008;14(5):507–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.

    CAS  PubMed  Google Scholar 

  141. Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Mov Disord. 2013;28(1):24–30.

    CAS  PubMed  Google Scholar 

  142. Morando S, Vigo T, Esposito M, Casazza S, Novi G, Principato MC, et al. The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem Cell Res Ther. 2012;3(1):3.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011;10(7):649–56.

    CAS  PubMed  Google Scholar 

  144. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol. 2005;58(6):963–7.

    CAS  PubMed  Google Scholar 

  145. Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol. 2003;60(8):1059–64.

    PubMed  Google Scholar 

  146. He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res. 2001;909(1–2):187–93.

    CAS  PubMed  Google Scholar 

  147. Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse. 2001;39(2):167–74.

    CAS  PubMed  Google Scholar 

  148. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5(12):1403–9.

    CAS  PubMed  Google Scholar 

  149. Morale MC, Serra PA, Delogu MR, Migheli R, Rocchitta G, Tirolo C, et al. Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. FASEB J. 2004;18(1):164–6.

    CAS  PubMed  Google Scholar 

  150. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000;74(5):2213–6.

    CAS  PubMed  Google Scholar 

  151. Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196(2):168–79.

    CAS  PubMed  Google Scholar 

  152. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96(23):13496–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21(8):2580–8.

    CAS  PubMed  Google Scholar 

  154. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2001;98(25):14669–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22(5):1763–71.

    CAS  PubMed  Google Scholar 

  156. NINDS.NET-PD.Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66(5):664–71.

    Google Scholar 

  157. NINDS.NET-PD.Investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. 2008;31(3):141–50.

    Google Scholar 

  158. Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 2010;25(1):97–107.

    PubMed  Google Scholar 

  159. Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 2009;58(3):652–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev. 2008;223:371–90.

    CAS  PubMed  Google Scholar 

  161. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+, CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–76.

    CAS  PubMed  Google Scholar 

  162. Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B. Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J Neuroimmunol. 2009;216(1–2):113–7.

    CAS  PubMed  Google Scholar 

  163. Vandenbark AA, Huan J, Agotsch M, La Tocha D, Goelz S, Offner H, et al. Interferon-beta-1a treatment increases CD56bright natural killer cells and CD4+ CD25+ Foxp3 expression in subjects with multiple sclerosis. J Neuroimmunol. 2009;215(1–2):125–8.

    CAS  PubMed  Google Scholar 

  164. Lowther DE, Hafler DA. Regulatory T cells in the central nervous system. Immunol Rev. 2012;248(1):156–69.

    PubMed  Google Scholar 

  165. Lan Q, Fan H, Quesniaux V, Ryffel B, Liu Z, Zheng SG. Induced Foxp3(+) regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases? J Mol Cell Biol. 2012;4(1):22–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants 3R01NS070190-03S1 (R.A.W.) and 5R01NS070190-03 (R.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Mosley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilshusen, R.A., Mosley, R.L. (2014). Innate and Adaptive Immune-Mediated Neuroinflammation and Neurodegeneration in Parkinson’s Disease. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_7

Download citation

Publish with us

Policies and ethics