Skip to main content

Inflammation and the Pathophysiology of Astrocytes in Neurodegenerative Diseases

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration

Abstract

Astrocytes, the most abundant cell in the central nervous system, are essential for brain function and homeostasis. This chapter focuses on the immunological role of astrocytes in the pathology of major neurodegenerative diseases. Astrocyte activation, or astrogliosis, has been observed in many neurodegenerative diseases. Factors associated with neurodegeneration including extracellular oligomerized proteins such as amyloid β and α-synuclein as well as inflammatory cytokines and chemokines can influence the functionality of astrocytes. In response to such stimuli, astrocytes produce a multitude of soluble factors including cytokines, chemokines, reactive oxygen/nitrogen species, and growth factors. This astrocytic response is initially protective, limiting damage and promoting functional recovery. However, the prolonged and progressive nature of neurodegenerative diseases establishes an environment in which astrogliosis may be aberrantly sustained, and the ongoing production of astrocyte-derived molecules contributes to the non-resolving inflammatory and neurotoxic landscape associated with neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

Aβ:

Amyloid β

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

DAMP:

Damage-associated molecular pattern

GDNF:

Glial-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HD:

Huntington’s disease

IFN:

Interferon

ISG:

Interferon-stimulated genes

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

NFT:

Neurofibrillary tangles

NF-κB:

Nuclear factor-kappa B

NOD:

Nucleotide-binding oligomerization domain

PGD2:

Prostaglandin D2

PRR:

Pattern recognition receptor

STAT:

Signal transducer and activator of transcription

SN:

Substantia nigra

SOD1:

Superoxide dismutase 1

TBI:

Traumatic brain injury

Th:

T helper

TLR:

Toll-like receptor

References

  1. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. PubMed PMID: 20012068, Pubmed Central PMCID: 2799634.

    PubMed Central  PubMed  Google Scholar 

  2. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47. PubMed PMID: 19782411, Pubmed Central PMCID: 2787735.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–15. PubMed PMID: 10322493.

    CAS  PubMed  Google Scholar 

  4. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55(12):1251–62. PubMed PMID: 17659524.

    PubMed  Google Scholar 

  5. Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20(2):160–72. PubMed PMID: 24106265, Pubmed Central PMCID: 24106265.

    CAS  PubMed  Google Scholar 

  6. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–45. PubMed PMID: 17276138.

    CAS  PubMed  Google Scholar 

  7. Sterka Jr D, Rati DM, Marriott I. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia. 2006;53(3):322–30. PubMed PMID: 16265673.

    PubMed  Google Scholar 

  8. Minkiewicz J, de Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia. 2013;61(7):1113–21. PubMed PMID: 23625868.

    PubMed  Google Scholar 

  9. Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal. 2012;8(3):629–57. PubMed PMID: 22544529, Pubmed Central PMCID: 22544529.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Oh JW, Schwiebert LM, Benveniste EN. Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J Neurovirol. 1999;5(1):82–94. PubMed PMID: 10190694.

    CAS  PubMed  Google Scholar 

  11. Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–90. PubMed PMID: 11596126, Pubmed Central PMCID: 11596126.

    CAS  PubMed  Google Scholar 

  12. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R, et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol. 2005;64(8):706–15. PubMed PMID: 16106219.

    CAS  PubMed  Google Scholar 

  13. Brown GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007;35(Pt 5):1119–21. PubMed PMID: 17956292, Pubmed Central PMCID: 17956292.

    CAS  PubMed  Google Scholar 

  14. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308. PubMed PMID: 10399936.

    CAS  PubMed  Google Scholar 

  15. Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52(1):61–76. PubMed PMID: 17015227, Pubmed Central PMCID: 17015227.

    CAS  PubMed  Google Scholar 

  16. Steinman L. Nuanced roles of cytokines in three major human brain disorders. J Clin Invest. 2008;118(11):3557–63. PubMed PMID: 18982162, Pubmed Central PMCID: 2575716.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci. 2006;27(1):48–55. PubMed PMID: 16310865, Pubmed Central PMCID: 16310865.

    CAS  PubMed  Google Scholar 

  18. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–30. PubMed PMID: 20692338, Pubmed Central PMCID: 20692338.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol. 2001;2(9):762–4. PubMed PMID: 11526378.

    CAS  PubMed  Google Scholar 

  20. Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–55. PubMed PMID: 16510748.

    CAS  PubMed  Google Scholar 

  21. Amato MP, Portaccio E, Goretti B, Zipoli V, Hakiki B, Giannini M, et al. Cognitive impairment in early stages of multiple sclerosis. Neurol Sci. 2010;31 Suppl 2:S211–4. PubMed PMID: 20640466.

    PubMed  Google Scholar 

  22. Miller AE, Rhoades RW. Treatment of relapsing-remitting multiple sclerosis: current approaches and unmet needs. Curr Opin Neurol. 2012;25(Suppl):S4–10. PubMed PMID: 22398662, Pubmed Central PMCID: 22398662.

    CAS  PubMed  Google Scholar 

  23. Gasperini C, Ruggieri S. Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, fingolimod will change therapeutic paradigm approach. Drug Des Devel Ther. 2012;6:175–86. PubMed PMID: 22888218, Pubmed Central PMCID: 22888218.

    PubMed Central  PubMed  Google Scholar 

  24. Baxter AG. The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol. 2007;7(11):904–12. PubMed PMID: 17917672.

    CAS  PubMed  Google Scholar 

  25. Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810–9. PubMed PMID: 17487163.

    CAS  PubMed  Google Scholar 

  26. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1–11. PubMed PMID: 20682002, Pubmed Central PMCID: 2990924.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8(5):500–8. PubMed PMID: 11984595.

    CAS  PubMed  Google Scholar 

  28. Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013;61(4):453–65. PubMed PMID: 23322421, Pubmed Central PMCID: 23322421.

    PubMed  Google Scholar 

  29. Aquino DA, Shafit-Zagardo B, Brosnan CF, Norton WT. Expression of glial fibrillary acidic protein and neurofilament mRNA in gliosis induced by experimental autoimmune encephalomyelitis. J Neurochem. 1990;54(4):1398–404. PubMed PMID: 1690269, Pubmed Central PMCID: 1690269.

    CAS  PubMed  Google Scholar 

  30. Tani M, Glabinski AR, Tuohy VK, Stoler MH, Estes ML, Ransohoff RM. In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am J Pathol. 1996;148(3):889–96. PubMed PMID: 8774143, Pubmed Central PMCID: 8774143.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Luo J, Ho P, Steinman L, Wyss-Coray T. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. J Neuroinflammation. 2008;5:6. PubMed PMID: 18237444, Pubmed Central PMCID: 18237444.

    PubMed Central  PubMed  Google Scholar 

  32. Guo F, Maeda Y, Ma J, Delgado M, Sohn J, Miers L, et al. Macroglial plasticity and the origins of reactive astroglia in experimental autoimmune encephalomyelitis. J Neurosci. 2011;31(33):11914–28. PubMed PMID: 21849552, Pubmed Central PMCID: 21849552.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Van Der Voorn P, Tekstra J, Beelen RH, Tensen CP, Van Der Valk P, De Groot CJ. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol. 1999;154(1):45–51. PubMed PMID: 9916917.

    Google Scholar 

  34. Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA, et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 1993;7(6):592–600. PubMed PMID: 8472896.

    CAS  PubMed  Google Scholar 

  35. Ambrosini E, Columba-Cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia. 2003;41(3):290–300. PubMed PMID: 12528183.

    PubMed  Google Scholar 

  36. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med. 2000;192(7):1075–80. PubMed PMID: 11015448, Pubmed Central PMCID: PMC2193310.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Liston A, Kohler RE, Townley S, Haylock-Jacobs S, Comerford I, Caon AC, et al. Inhibition of CCR6 function reduces the severity of experimental autoimmune encephalomyelitis via effects on the priming phase of the immune response. J Immunol. 2009;182(5):3121–30. PubMed PMID: 19234209.

    CAS  PubMed  Google Scholar 

  38. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LBJ, Tiwari-Woodruff S, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29(37):11511–22. PubMed PMID: 19759299, Pubmed Central PMCID: 19759299.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254–66. PubMed PMID: 23136554, Pubmed Central PMCID: 23136554.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci. 1999;19(13):5236–44. PubMed PMID: 10377335.

    PubMed  Google Scholar 

  41. Mackiewicz A, Schooltink H, Heinrich PC, Rose-John S. Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol. 1992;149(6):2021–7. PubMed PMID: 1381393.

    CAS  PubMed  Google Scholar 

  42. Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E, et al. Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2009;183(3):2079–88. PubMed PMID: 19597000.

    CAS  PubMed  Google Scholar 

  43. Haroon F, Drogemuller K, Handel U, Brunn A, Reinhold D, Nishanth G, et al. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol. 2011;186(11):6521–31. PubMed PMID: 21515788.

    CAS  PubMed  Google Scholar 

  44. Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity. 2010;32(3):414–25. PubMed PMID: 20303295.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ma X, Reynolds SL, Baker BJ, Li X, Benveniste EN, Qin H. IL-17 enhancement of the IL-6 signaling cascade in astrocytes. J Immunol. 2010;184(9):4898–906. PubMed PMID: 20351184.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Meares GP, Ma X, Qin H, Benveniste EN. Regulation of CCL20 expression in astrocytes by IL-6 and IL-17. Glia. 2012;60(5):771–81. PubMed PMID: 22319003, Pubmed Central PMCID: 22319003.

    PubMed  Google Scholar 

  47. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. PubMed PMID: 19575028.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11–9. PubMed PMID: 20018552, Pubmed Central PMCID: 20018552.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G, et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol. 2009;182(5):2628–40. PubMed PMID: 19234157.

    CAS  PubMed  Google Scholar 

  50. van Loo G, De Lorenzi R, Schmidt H, Huth M, Mildner A, Schmidt-Supprian M, et al. Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol. 2006;7(9):954–61. PubMed PMID: 16892069.

    PubMed  Google Scholar 

  51. Chitnis T, Khoury SJ. Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res. 2003;28(3):223–39. PubMed PMID: 14713716.

    CAS  PubMed  Google Scholar 

  52. Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol. 2008;4(7):384–98. PubMed PMID: 18578001.

    CAS  PubMed  Google Scholar 

  53. Carter SL, Müller M, Manders PM, Campbell IL. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007;55(16):1728–39. PubMed PMID: 17902170, Pubmed Central PMCID: 17902170.

    PubMed  Google Scholar 

  54. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol. 2008;181(12):8391–401. PubMed PMID: 19050256.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Fontana A, Fierz W, Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984;307(5948):273–6. PubMed PMID: 6198590.

    CAS  PubMed  Google Scholar 

  56. Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS. Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol. 1998;161(11):5959–66. PubMed PMID: 9834077.

    CAS  PubMed  Google Scholar 

  57. Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol. 1998;160(9):4271–9. PubMed PMID: 9574529.

    CAS  PubMed  Google Scholar 

  58. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777–81. PubMed PMID: 17082447, Pubmed Central PMCID: 17082447.

    CAS  PubMed  Google Scholar 

  59. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat. 1995;8(6):429–31. PubMed PMID: 8713166.

    CAS  PubMed  Google Scholar 

  60. Kashon ML, Ross GW, O’Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, et al. Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis. 2004;6(6):595–604. discussion 73–81, PubMed PMID: 15665400.

    PubMed  Google Scholar 

  61. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging. 2010;31(4):578–90. PubMed PMID: 18586353.

    CAS  PubMed  Google Scholar 

  62. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–7. PubMed PMID: 12612547.

    CAS  PubMed  Google Scholar 

  63. Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 2013;27(1):187–98. PubMed PMID: 23038755, Pubmed Central PMCID: 3528309.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65. PubMed PMID: 18604209, Pubmed Central PMCID: 3101478.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Fassbender K, Walter S, Kühl S, Landmann R, Ishii K, Bertsch T, et al. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J. 2004;18(1):203–5. PubMed PMID: 14597556, Pubmed Central PMCID: 14597556.

    CAS  PubMed  Google Scholar 

  66. Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem. 2012;287(17):13959–71. PubMed PMID: 22383525, Pubmed Central PMCID: 22383525.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Yang W, Wu Q, Yuan C, Gao J, Xiao M, Gu M, et al. Aquaporin-4 mediates astrocyte response to β-amyloid. Mol Cell Neurosci. 2012;49(4):406–14. PubMed PMID: 22365952, Pubmed Central PMCID: 22365952.

    CAS  PubMed  Google Scholar 

  68. Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis. 2012;31(3):555–67. PubMed PMID: 22647260, Pubmed Central PMCID: 22647260.

    CAS  PubMed  Google Scholar 

  69. Jones RS, Minogue AM, Connor TJ, Lynch MA. Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol. 2013;8(1):301–11. PubMed PMID: 23238794, Pubmed Central PMCID: 23238794.

    PubMed  Google Scholar 

  70. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S-I, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110(27):E2518. PubMed PMID: 23776240, Pubmed Central PMCID: 23776240.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000;75(3):1155–61. PubMed PMID: 10936198, Pubmed Central PMCID: 10936198.

    CAS  PubMed  Google Scholar 

  72. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86(19):7611–5. PubMed PMID: 2529544, Pubmed Central PMCID: 2529544.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab Invest. 1992;66(2):223–30. PubMed PMID: 1370967, Pubmed Central PMCID: 1370967.

    CAS  PubMed  Google Scholar 

  74. Tehranian R, Hasanvan H, Iverfeldt K, Post C, Schultzberg M. Early induction of interleukin-6 mRNA in the hippocampus and cortex of APPsw transgenic mice Tg2576. Neurosci Lett. 2001;301(1):54–8. PubMed PMID: 11239715.

    CAS  PubMed  Google Scholar 

  75. Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging. 1999;20(6):581–9. PubMed PMID: 10674423.

    CAS  PubMed  Google Scholar 

  76. Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci U S A. 1997;94(4):1500–5. PubMed PMID: 9037082, Pubmed Central PMCID: 19820.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Benveniste EN, Sparacio SM, Norris JG, Grenett HE, Fuller GM. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J Neuroimmunol. 1990;30(2–3):201–12. PubMed PMID: 2121800.

    CAS  PubMed  Google Scholar 

  78. Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol. 2009;4(4):462–75. PubMed PMID: 19669892, Pubmed Central PMCID: 2773117.

    PubMed Central  PubMed  Google Scholar 

  79. Casamenti F, Prosperi C, Scali C, Giovannelli L, Colivicchi MA, Faussone-Pellegrini MS, et al. Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer’s disease. Neuroscience. 1999;91(3):831–42. PubMed PMID: 10391466.

    CAS  PubMed  Google Scholar 

  80. Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG. Amyloid-beta1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci. 2013;33(12):5312–8. PubMed PMID: 23516295.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, et al. S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol. 2009;206(1–2):52–7. PubMed PMID: 19042033.

    PubMed  Google Scholar 

  82. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85(7):1373–80. PubMed PMID: 17348038, Pubmed Central PMCID: 17348038.

    CAS  PubMed  Google Scholar 

  83. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol. 2011;187(12):6539–49. PubMed PMID: 22095718.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39(3):409–21. PubMed PMID: 12895417, Pubmed Central PMCID: 12895417.

    CAS  PubMed  Google Scholar 

  85. Akama KT, Van Eldik LJ. Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1 beta- and tumor necrosis factor-alpha (TNF alpha)-dependent, and involves a TNF alpha receptor-associated factor- and NF kappa B-inducing kinase-dependent signaling mechanism. J Biol Chem. 2000;275(11):7918–24. PubMed PMID: WOS:000085913300068.

    CAS  PubMed  Google Scholar 

  86. Meda L, Baron P, Scarlato G. Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging. 2001;22(6):885–93. PubMed PMID: 11754995.

    CAS  PubMed  Google Scholar 

  87. Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist. 2010;16(4):435–52. PubMed PMID: 20817920.

    CAS  PubMed  Google Scholar 

  88. Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–75. PubMed PMID: 14724257.

    CAS  PubMed  Google Scholar 

  89. Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003;27(3):325–55. PubMed PMID: 12845153.

    CAS  PubMed  Google Scholar 

  90. Liu L, Li Y, Van Eldik LJ, Griffin WST, Barger SW. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem. 2005;92(3):546–53. PubMed PMID: 15659225, Pubmed Central PMCID: 15659225.

    CAS  PubMed  Google Scholar 

  91. Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci U S A. 1995;92(7):3032–5. PubMed PMID: 7708769, Pubmed Central PMCID: 7708769.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis. 2000;7(6 Pt B):682–9. PubMed PMID: 11114266, Pubmed Central PMCID: 11114266.

    CAS  PubMed  Google Scholar 

  93. Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2011;8:150. PubMed PMID: 22047170, Pubmed Central PMCID: 22047170.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, et al. Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 1998;8(1):65–72. PubMed PMID: 9458167, Pubmed Central PMCID: 9458167.

    CAS  PubMed  Google Scholar 

  95. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211. PubMed PMID: 12498954.

    PubMed  Google Scholar 

  96. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182–92. PubMed PMID: 19104149, Pubmed Central PMCID: 2613467.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience. 1993;52(1):1–6. PubMed PMID: 8433802.

    CAS  PubMed  Google Scholar 

  98. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97. PubMed PMID: 19296921.

    CAS  PubMed  Google Scholar 

  99. Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, et al. Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol. 2012;237(2):318–34. PubMed PMID: 22750327, Pubmed Central PMCID: 3443323.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Barnum CJ, Tansey MG. Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res. 2010;184:113–32. PubMed PMID: 20887872.

    CAS  PubMed  Google Scholar 

  101. Herrera AJ, Castaño A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7(4):429–47. PubMed PMID: 10964613, Pubmed Central PMCID: 10964613.

    CAS  PubMed  Google Scholar 

  102. Gao H-M, Liu B, Zhang W, Hong J-S. Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. FASEB J. 2003;17(13):1957–9. PubMed PMID: 12923073, Pubmed Central PMCID: 12923073.

    CAS  PubMed  Google Scholar 

  103. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47–59. PubMed PMID: 19345186, Pubmed Central PMCID: 2754279.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol. 2007;114(3):231–41. PubMed PMID: 17576580.

    CAS  PubMed  Google Scholar 

  105. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262–72. PubMed PMID: 20071342, Pubmed Central PMCID: 2838344.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12. PubMed PMID: 20409326, Pubmed Central PMCID: 2873589.

    PubMed Central  PubMed  Google Scholar 

  107. Tousi NS, Buck DJ, Curtis JT, Davis RL. alpha-Synuclein potentiates interleukin-1beta-induced CXCL10 expression in human A172 astrocytoma cells. Neurosci Lett. 2012;507(2):133–6. PubMed PMID: 22178859, Pubmed Central PMCID: 3259703.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, et al. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology. 2004;329(2):302–18. PubMed PMID: 15518810.

    PubMed  Google Scholar 

  109. Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation. 2012;9:239. PubMed PMID: 23078780, Pubmed Central PMCID: 3533742.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Gan L, Vargas MR, Johnson DA, Johnson JA. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci. 2012;32(49):17775–87. PubMed PMID: 23223297, Pubmed Central PMCID: 3539799.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Yera D, et al. IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis. 2011;2:e142. PubMed PMID: 21472005, Pubmed Central PMCID: 3122054.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kim J, Byun JW, Choi I, Kim B, Jeong HK, Jou I, et al. PINK1 deficiency enhances inflammatory cytokine release from acutely prepared brain slices. Exp Neurobiol. 2013;22(1):38–44. PubMed PMID: 23585721, Pubmed Central PMCID: 3620457.

    PubMed Central  PubMed  Google Scholar 

  113. Choi I, Kim J, Jeong HK, Kim B, Jou I, Park SM, et al. PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia. 2013;61(5):800–12. PubMed PMID: 23440919.

    PubMed Central  PubMed  Google Scholar 

  114. Waak J, Weber SS, Waldenmaier A, Gorner K, Alunni-Fabbroni M, Schell H, et al. Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J. 2009;23(8):2478–89. PubMed PMID: 19276172.

    CAS  PubMed  Google Scholar 

  115. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83. PubMed PMID: 8458085. Pubmed Central PMCID: 8458085.

    Google Scholar 

  116. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98. PubMed PMID: 21163446, Pubmed Central PMCID: 21163446.

    CAS  PubMed  Google Scholar 

  117. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205(8):1869–77. PubMed PMID: 18625748, Pubmed Central PMCID: 2525598.

    PubMed Central  PubMed  Google Scholar 

  118. Hsiao HY, Chern Y. Targeting glial cells to elucidate the pathogenesis of Huntington’s disease. Mol Neurobiol. 2010;41(2–3):248–55. PubMed PMID: 20107928.

    CAS  PubMed  Google Scholar 

  119. Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A. 2009;106(52):22480–5. PubMed PMID: 20018729, Pubmed Central PMCID: 20018729.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, et al. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sinica. 2012;44(3):249–58. PubMed PMID: 22234237.

    CAS  Google Scholar 

  121. Giralt A, Friedman HC, Caneda-Ferron B, Urban N, Moreno E, Rubio N, et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther. 2010;17(10):1294–308. PubMed PMID: 20463759.

    CAS  PubMed  Google Scholar 

  122. Arregui L, Benitez JA, Razgado LF, Vergara P, Segovia J. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol. 2011;31(8):1229–43. PubMed PMID: 21681558.

    CAS  PubMed  Google Scholar 

  123. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. PubMed PMID: 8898202, Pubmed Central PMCID: 8898202.

    CAS  PubMed  Google Scholar 

  124. Alberch J, Perez-Navarro E, Canals JM. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res Bull. 2002;57(6):817–22. PubMed PMID: 12031278.

    CAS  PubMed  Google Scholar 

  125. Ebert AD, Barber AE, Heins BM, Svendsen CN. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington’s disease. Exp Neurol. 2010;224(1):155–62. PubMed PMID: 20227407.

    CAS  PubMed  Google Scholar 

  126. Ruiz C, Casarejos MJ, Gomez A, Solano R, de Yebenes JG, Mena MA. Protection by glia-conditioned medium in a cell model of Huntington disease. PLoS Curr. 2012;4:e4fbca54a2028b. PubMed PMID: 22919565, Pubmed Central PMCID: 22919565.

    PubMed Central  PubMed  Google Scholar 

  127. Raymond LA, Andre VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience. 2011;198:252–73. PubMed PMID: 21907762, Pubmed Central PMCID: 3221774.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Hassel B, Tessler S, Faull RL, Emson PC. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res. 2008;33(2):232–7. PubMed PMID: 17726644.

    CAS  PubMed  Google Scholar 

  129. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005;171(6):1001–12. PubMed PMID: 16365166, Pubmed Central PMCID: 2171327.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19(15):3053–67. PubMed PMID: 20494921, Pubmed Central PMCID: 2901144.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Soulet D, Cicchetti F. The role of immunity in Huntington’s disease. Mol Psychiatr. 2011;16(9):889–902. PubMed PMID: 21519341.

    CAS  Google Scholar 

  132. Chou SY, Weng JY, Lai HL, Liao F, Sun SH, Tu PH, et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci. 2008;28(13):3277–90. PubMed PMID: 18367595.

    CAS  PubMed  Google Scholar 

  133. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet. 2013;22(9):1826–42. PubMed PMID: 23372043.

    CAS  PubMed  Google Scholar 

  134. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol. 2009;187(6):761–72. PubMed PMID: 19951898, Pubmed Central PMCID: 2806318.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. PubMed PMID: 20303880.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11(3):251–3. PubMed PMID: 18246065, Pubmed Central PMCID: 3137510.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell. 2008;3(6):649–57. PubMed PMID: 19041781.

    CAS  PubMed  Google Scholar 

  138. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, et al. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci. 1998;18(3):923–31. PubMed PMID: 9437014.

    CAS  PubMed  Google Scholar 

  139. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824–8. PubMed PMID: 21832997, Pubmed Central PMCID: 3170425.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–22. PubMed PMID: 17435755.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. 2008;3(6):637–48. PubMed PMID: 19041780.

    PubMed  Google Scholar 

  142. Aebischer J, Cassina P, Otsmane B, Moumen A, Seilhean D, Meininger V, et al. IFNγ triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1. Cell Death Differ. 2011;18(5):754–68. PubMed PMID: 21072055, Pubmed Central PMCID: 21072055.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wang R, Yang B, Zhang D. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia. 2011;59(6):946–58. PubMed PMID: 21446050, Pubmed Central PMCID: 21446050.

    PubMed Central  PubMed  Google Scholar 

  144. Van Everbroeck B, Dewulf E, Pals P, Lübke U, Martin J-J, Cras P. The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging. 2002;23(1):59–64. PubMed PMID: 11755020, Pubmed Central PMCID: 11755020.

    PubMed  Google Scholar 

  145. Myerowitz R, Lawson D, Mizukami H, Mi Y, Tifft CJ, Proia RL. Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Gen. 2002;11(11):1343–50. PubMed PMID: 12019216, Pubmed Central PMCID: 12019216.

    CAS  PubMed  Google Scholar 

  146. Ransom BR, Ransom CB. Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol. 2012;814:3–7. PubMed PMID: 22144296, Pubmed Central PMCID: 22144296.

    CAS  PubMed  Google Scholar 

  147. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem. 2004;89(5):1092–100. PubMed PMID: 15147501, Pubmed Central PMCID: 15147501.

    CAS  PubMed  Google Scholar 

  148. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–7. PubMed PMID: 16151042, Pubmed Central PMCID: 16151042.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Multiple Sclerosis Society (NMSS), CA-1059A-13 and RG-4885-A-14 to E.N.B. and TA-3050-A-1 to G.P.M., and NIH grants NS45290 and NS57563 (E.N.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon P. Meares Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meares, G.P., Benveniste, E.N. (2014). Inflammation and the Pathophysiology of Astrocytes in Neurodegenerative Diseases. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_4

Download citation

Publish with us

Policies and ethics