Skip to main content

Animal Models of Chronic Right Ventricular Stress and Failure

  • Chapter
  • First Online:
  • 2015 Accesses

Part of the book series: Respiratory Medicine ((RM))

Abstract

Animal models of diseases are of pivotal importance for the investigation of the normal organ function, the pathobiology of frequent and rare disorders as well as for preclinical proof of principle studies. It has been noticed that there are substantial gaps between our knowledge and understanding of left and right heart failure. To a large extent the concepts underlying right ventricular failure (RVF) have been borrowed from models of left heart failure or extrapolated from models of acute RVF. Today, several models of pulmonary hypertension are used by investigators and the aim of this chapter is to review current models of adaptive and maladaptive right ventricular hypertrophy in small and large animals. We discuss the pros and cons of each model depending on the particular disease aspect which the investigator attempts to reproduce, and we make a case for the development of new animal models of chronic RVF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Voelkel NF, et al. Mechanisms of right heart failure—a work in progress and a plea for failure prevention. Pulm Circ. 2013;3(1):137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gomez-Arroyo JG, et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L977–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Euler V, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946;12:301–20.

    Article  Google Scholar 

  4. Will DH, et al. High altitude-induced pulmonary hypertension in normal cattle. Circ Res. 1962;10:172–7.

    Article  PubMed  CAS  Google Scholar 

  5. Reeves JT, Leathers JE. Hypoxic pulmonary hypertension of the calf with denervation of the lungs. J Appl Physiol. 1964;19:976–80.

    PubMed  CAS  Google Scholar 

  6. Geha AS, Duffy JP, Swan HJ. Relation of increase in muscle mass to performance of hypertrophied right ventricle in the dog. Circ Res. 1966;19(2):255–9.

    Article  PubMed  CAS  Google Scholar 

  7. Spann Jr JF, et al. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res. 1967;21(3):341–54.

    Article  PubMed  Google Scholar 

  8. Williams Jr JF, Potter RD. Normal contractile state of hypertrophied myocardium after pulmonary artery constriction in the cat. J Clin Invest. 1974;54(6):1266–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murray PA, et al. Effects of experimental right ventricular hypertrophy on myocardial blood-flow in conscious dogs. J Clin Invest. 1979;64(2):421–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Huo Y, Linares CO, Kassab GS. Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle. Circ Res. 2007;100(2):273–83.

    Article  PubMed  CAS  Google Scholar 

  11. Reeves JT, Leathers JE. Circulatory changes following birth of the calf and the effect of hypoxia. Circ Res. 1964;15:343–54.

    Article  PubMed  CAS  Google Scholar 

  12. Lemler MS, et al. Myocyte cytoskeletal disorganization and right heart failure in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2000;279(3):H1365–76.

    PubMed  CAS  Google Scholar 

  13. Walker LA, et al. Biochemical and myofilament responses of the right ventricle to severe pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2011;301(3):H832–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bogaard HJ, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    Article  PubMed  Google Scholar 

  15. Andersen A, et al. Effects of phosphodiesterase-5 inhibition by sildenafil in the pressure overloaded right heart. Eur J Heart Fail. 2008;10(12):1158–65.

    Article  PubMed  CAS  Google Scholar 

  16. Olivetti G, et al. Long-term pressure-induced cardiac hypertrophy: capillary and mast cell proliferation. Am J Physiol. 1989;257(6 Pt 2):H1766–72.

    PubMed  CAS  Google Scholar 

  17. Olivetti G, et al. Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res. 1988;63(3):648–57.

    Article  PubMed  CAS  Google Scholar 

  18. Faber MJ, et al. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol. 2006;291(4):H1580–6.

    Article  PubMed  CAS  Google Scholar 

  19. Piao L, et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation. 2012;126(24):2859–69.

    Article  PubMed  CAS  Google Scholar 

  20. Faber MJ, et al. Time dependent changes in cytoplasmic proteins of the right ventricle during prolonged pressure overload. J Mol Cell Cardiol. 2007;43(2):197–209.

    Article  PubMed  CAS  Google Scholar 

  21. Drake JI, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Fang YH, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31–43.

    Article  CAS  Google Scholar 

  23. Gomez-Arroyo J, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail. 2013;6(1):136–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Urashima T, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295(3):H1351–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Brown RD, et al. MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;304(2):H269–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Gautier M, et al. Continuous inhalation of carbon monoxide induces right ventricle ischemia and dysfunction in rats with hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2007;293(2):H1046–52.

    Article  PubMed  CAS  Google Scholar 

  27. Yet S-F, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest. 1999;103:R23–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Cruz JA, et al. Chronic hypoxia induces right heart failure in caveolin-1-/- mice. Am J Physiol Heart Circ Physiol. 2012;302(12):H2518–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Gomez-Arroyo JG, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 2012;302(4):L363–9.

    Article  PubMed  CAS  Google Scholar 

  30. Ruiter G, et al. Reversibility of the monocrotaline pulmonary hypertension rat model. Eur Respir J. 2013;42(2):553–6.

    Article  PubMed  CAS  Google Scholar 

  31. Nicolls MR, et al. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ. 2012;2:434–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Drake JI, et al. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Physiol Genomics. 2013; 45(12):449–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Benoist D, et al. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2011;300(6):H2230–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Mitani Y, Maruyama K, Sakurai M. Prolonged administration of L-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation. 1997;96(2):689–97.

    Article  PubMed  CAS  Google Scholar 

  35. Okada K, et al. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol. 1997;151(4):1019–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Bogaard HJ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60. doi:10.1164/rccm.201003-0335OC.

    Article  PubMed  CAS  Google Scholar 

  37. de Man FS, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5(1):97–105.

    Article  PubMed  Google Scholar 

  38. Fong TA, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59(1):99–106.

    PubMed  CAS  Google Scholar 

  39. Oka M, et al. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res. 2007;100(6):923–9.

    Article  PubMed  CAS  Google Scholar 

  40. Taraseviciene-Stewart L, et al. Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L668–76.

    Article  PubMed  CAS  Google Scholar 

  41. Taraseviciene-Stewart L, et al. Bosentan fails to prevent right ventricular hypertrophy and heart failure in immune impaired animals exposed to chronic hypoxia. Am J Respir Crit Care Med. 2009;179:A1822.

    Google Scholar 

  42. Bogaard HJ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60.

    Article  PubMed  CAS  Google Scholar 

  43. Ryan JJ, et al. PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;187(8):865–78.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Sanyal SN, et al. Cardiac autonomic nerve abnormalities in chronic heart failure are associated with presynaptic vagal nerve degeneration. Pathophysiology. 2012;19(4):253–60.

    Article  PubMed  Google Scholar 

  45. Usui S, et al. Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension. Circ J. 2006;70(9):1208–15.

    Article  PubMed  CAS  Google Scholar 

  46. Hardziyenka M, et al. Right ventricular failure following chronic pressure overload is associated with reduction in left ventricular mass evidence for atrophic remodeling. J Am Coll Cardiol. 2011;57(8):921–8.

    Article  PubMed  Google Scholar 

  47. Borgdorff MA, et al. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol Heart Circ Physiol. 2013;305(3):H354–64.

    Article  PubMed  CAS  Google Scholar 

  48. Enache I, et al. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem. 2013;373(1–2):161–70.

    Article  PubMed  CAS  Google Scholar 

  49. Nishimura T, et al. Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation. 2003;108(13):1640–5.

    Article  PubMed  CAS  Google Scholar 

  50. Paulin R, et al. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1798–809.

    Article  PubMed  CAS  Google Scholar 

  51. Jasinska-Stroschein M, et al. The beneficial impact of fasudil and sildenafil on monocrotaline-induced pulmonary hypertension in rats: a hemodynamic and biochemical study. Pharmacology. 2013;91(3–4):178–84.

    Article  PubMed  CAS  Google Scholar 

  52. Long L, et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res. 2013;112(8):1159–70.

    Article  PubMed  CAS  Google Scholar 

  53. Colombo R, et al. Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol. 2013;91(1):38–44.

    Article  PubMed  CAS  Google Scholar 

  54. Handoko ML, et al. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation. 2009;120(1):42–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Gomez-Arroyo M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomez-Arroyo, J., de Raaf, M.A., Bogaard, H.J., Voelkel, N.F. (2015). Animal Models of Chronic Right Ventricular Stress and Failure. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics