Skip to main content

Echocardiography of Chronic Right Heart Failure

  • Chapter
  • First Online:
  • 2051 Accesses

Part of the book series: Respiratory Medicine ((RM))

Abstract

Right heart failure most commonly develops from pressure overload, volume overload, or ischemic heart disease. Unlike for the left ventricle (LV), the classic metrics for assessing the status of the failing RV, volume and systolic function, cannot be measured accurately from two-dimensional (2D) echocardiograms. To compensate, a multiplicity of methods has been developed for evaluating RV status using Doppler and 3D echo, and innovative approaches are available for 2D echo. This chapter presents the advantages and applications of ultrasound, which is one of several imaging modalities that may be employed to manage patients with right heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Simon MA. Assessment and treatment of right ventricular failure. Nat Rev Cardiol. 2013;10(4):204–18.

    PubMed  CAS  Google Scholar 

  2. Goldstein JA. Acute right ventricular infarction: insights for the interventional era. Curr Probl Cardiol. 2012;37(12):533–57.

    PubMed  Google Scholar 

  3. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    PubMed  Google Scholar 

  4. Grossman W, Carabello BA, Gunther S, Fifer MA. Ventricular wall stress and the development of cardiac hypertrophy and failure. Perspect Cardiovasc Res. 1983;7:1–18.

    Google Scholar 

  5. Sheehan FH, Ge S, Vick III GW, et al. Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol. 2008;101:107–13.

    PubMed  Google Scholar 

  6. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68:68–75.

    PubMed  CAS  Google Scholar 

  7. Leary PJ, Kurtz CE, Hough CL, Waiss M-P, Ralph DD, Sheehan FH. Three-dimensional analysis of right ventricular shape and function in pulmonary hypertension. Pulm Circ. 2012;2:34–40.

    PubMed  PubMed Central  Google Scholar 

  8. Lopez-Candales A, Dohi K, Iliescu A, Peterson RC, Edelman K, Bazaz R. An abnormal right ventricular apical angle is indicative of global right ventricular impairment. Echocardiography. 2006;23:361–8.

    PubMed  Google Scholar 

  9. Sheehan FH, Waiss M-P. Right ventricular function assessment by three-dimensional echocardiography. In: Gill EA, editor. Atlas of 3D echocardiography. Philadelphia, PA: Elsevier; 2012. p. 238–68.

    Google Scholar 

  10. Horton KD, Meece RW, Hill JC. Assessment of the right ventricle by echocardiography: a primer for cardiac sonographers. J Am Soc Echocardiogr. 2009;22:776–92.

    PubMed  Google Scholar 

  11. Levine RA, Gibson TC, Aretz T, et al. Echocardiographic measurement of right ventricular volume. Circulation. 1984;69:497–505.

    PubMed  CAS  Google Scholar 

  12. Denslow S. An ellipsoidal shell model for volume estimation of the right ventricle from magnetic resonance images. Acad Radiol. 1994;1:345–51.

    PubMed  CAS  Google Scholar 

  13. Helbing WA, Bosch HG, Maliepaard C, et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol. 1995;76:589–94.

    PubMed  CAS  Google Scholar 

  14. Aebischer N, Meuli R, Jeanrenaud X, Koerfer J, Kappenberger L. An echocardiographic and magnetic resonance imaging comparative study of right ventricular volume determination. Int J Card Imaging. 1998;14:271–8.

    PubMed  CAS  Google Scholar 

  15. Badano LP, Ginghina C, Easaw J, et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11(1):27–37.

    PubMed  Google Scholar 

  16. Jiang L, Levine RA, Weyman AE. Echocardiographic assessment of right ventricular volume and function. Echocardiography. 1997;14:189–206.

    PubMed  Google Scholar 

  17. Lu X, Nadvoretskiy V, Bu L, et al. Accuracy and reproducibility of real-time three dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiogr. 2008;21:84–9.

    PubMed  Google Scholar 

  18. Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI. Chest. 2007;131:1844–51.

    PubMed  Google Scholar 

  19. Grison A, Maschietto N, Reffo E, et al. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr. 2007;20:921–9.

    PubMed  Google Scholar 

  20. Johnson TR, Hoch M, Huber A, et al. Quantification of right ventricular function in congenital heart disease: correlation of 3D echocardiography and MRI as complementary methods. Rofo. 2006;178:1014–21.

    PubMed  CAS  Google Scholar 

  21. Strugnell WE, Slaughter RE, Riley RA, Trotter AJ, Bartlett H. Modified RV short axis series—a new method for cardiac MRI measurement of right ventricular volumes. J Cardiovasc Magn Reson. 2005;7:769–74.

    PubMed  Google Scholar 

  22. Atalay MK, Chang KJ, Grand DJ, Haji-Momenian S, Machan J, Sheehan FH. The transaxial orientation is superior to both the short axis and horizontal long axis orientations for determining right ventricular volume and ejection fraction using Simpson’s method with cardiac magnetic resonance. ISRN Cardiol. 2013 (2013), Article ID 268697.

    Google Scholar 

  23. Moroseos T, Mitsumori L, Kerwin WS, et al. Comparison of Simpson’s method with three-dimensional reconstruction for measurement of right ventricular volume in patients with complete or corrected transposition of the great arteries. Am J Cardiol. 2010;105:1603–9.

    PubMed  Google Scholar 

  24. Iriart X, Montaudon M, Lafitte S, et al. Right ventricle three-dimensional echography in corrected tetralogy of Fallot: accuracy and variability. Eur J Echocardiogr. 2009;10:784–92.

    PubMed  Google Scholar 

  25. Winter MM, Bernink FJP, Groenink M, et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson. 2008;10:40.

    PubMed  PubMed Central  Google Scholar 

  26. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98:339–45.

    PubMed  CAS  Google Scholar 

  27. Edwards R, Shurman AJ, Sahn DJ, Jerosch-Herold M, Kilner PJ, Sheehan FH. Determination of right ventricular end systole by cardiovascular magnetic resonance imaging: a standard method of selection. Int J Cardiovasc Imaging. 2009;25:791–6.

    PubMed  Google Scholar 

  28. Linker D, Moritz W, Pearlman A. A new three-dimensional echocardiographic method of right ventricular volume measurement: in vitro validation. J Am Coll Cardiol. 1986;8:101–6.

    PubMed  CAS  Google Scholar 

  29. Jiang L, Handschumacher MD, Hibberd MG, et al. Three-dimensional echocardiographic reconstruction of right ventricular volume: in vitro comparison with two-dimensional methods. J Am Soc Echocardiogr. 1994;7:150–8.

    PubMed  Google Scholar 

  30. Jiang L, de Prada JAV, Handschumacher MD, et al. Three-dimensional echocardiography: in vivo validation for right ventricular free wall mass as an index of hypertrophy. J Am Coll Cardiol. 1994;23:1715–22.

    PubMed  CAS  Google Scholar 

  31. Buckey JC, Beattie JM, Nixon JV, Gaffney FA, Blomqvist CG. Right and left ventricular volumes in vitro by a new nongeometric method. Am J Card Imaging. 1987;1:227–33.

    PubMed  CAS  Google Scholar 

  32. Legget ME, Leotta DF, Bolson EL, et al. System for quantitative three dimensional echocardiography of the left ventricle based on a magnetic field position and orientation sensing system. IEEE Trans Biomed Eng. 1998;45:494–504.

    PubMed  CAS  Google Scholar 

  33. Hubka M, Bolson EL, McDonald JA, Martin RW, Munt B, Sheehan FH. Three-dimensional echocardiographic measurement of left and right ventricular mass and volume: in vitro validation. Int J Cardiovasc Imaging. 2002;18:111–8.

    PubMed  Google Scholar 

  34. Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography. 2006;23:395–9.

    PubMed  Google Scholar 

  35. Redington AN. Right ventricular function. Cardiol Clin. 2002;20:341–9.

    PubMed  Google Scholar 

  36. Sheehan FH, Kilner P, Sahn D, et al. Accuracy of knowledge based reconstruction for the measurement of right ventricular volume and function in patients with tetralogy of Fallot. Am J Cardiol. 2010;105:993–9.

    Google Scholar 

  37. Dragulescu A, Grosse-Wortmann L, Fackoury C, et al. Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method. J Am Soc Echocardiogr. 2011;24:1191–8.

    PubMed  Google Scholar 

  38. Fayad ZA, Ferrari VA, Kraitchman DL, et al. Right ventricular regional function using MR tagging: normals versus chronic pulmonary hypertension. Magn Reson Med. 1998;39:116–23.

    PubMed  CAS  Google Scholar 

  39. Naito H, Arisawa J, Harada K, Yamagami H, Kozuka T, Tamura S. Assessment of right ventricular regional contraction and comparison with the left ventricle in normal humans: a cine magnetic resonance study with presaturation myocardial tagging. Br Heart J. 1995;74:186–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Kaul S, Tei C, Hopkins J, Shah P. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107:526–31.

    PubMed  CAS  Google Scholar 

  41. Kind T, Mauritz G-J, Marcus T, van de Veerdonk M, Westerhof N, vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson. 2010;12:35.

    PubMed  PubMed Central  Google Scholar 

  42. Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 2007;24:452–6.

    PubMed  Google Scholar 

  43. Davlouros PA, Kilner PJ, Hornung TS, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40:2044–52.

    PubMed  Google Scholar 

  44. Hui W, El Rahman MYA, Dsebissowa F, et al. Comparison of modified short axis view and apical four chamber view in evaluating right ventricular function after repair of tetralogy of Fallot. Int J Cardiol. 2005;105:256–61.

    PubMed  CAS  Google Scholar 

  45. Sheehan FH, Mathey DG, Wygant J, Schofer J, Bolson EL. Measurement of regional right ventricular wall motion from biplane contrast angiograms using the centerline method. In: KL Ripley and HG Ostrow (eds.), Computers in Cardiology. Long Beach, CA: IEEE Computer Society; 1985. p. 149–152.

    Google Scholar 

  46. Nakasato M, Akiba T, Sato S, Suzuki H, Hayasaka K. Right and left ventricular function assessed by regional wall motion analysis in patients with tetralogy of Fallot. Int J Cardiol. 1997;58:127–34.

    PubMed  CAS  Google Scholar 

  47. Yang P, Otto C, Sheehan F. The effect of normalization in reducing variability in regional wall thickening. J Am Soc Echocardiogr. 1997;10:197–204.

    PubMed  CAS  Google Scholar 

  48. Tulevski II, Zijta FM, Smeijers AS, Dodge-Khatami A, van der Wall EE, Mulder BJM. Regional and global right ventricular dysfunction in asymptomatic or minimally symptomatic patients with congenitally corrected transposition. Cardiol Young. 2004;14:168–74.

    PubMed  Google Scholar 

  49. McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78:469–73.

    PubMed  CAS  Google Scholar 

  50. Laster SB, Shelton TJ, Barzilai B, Goldstein JA. Determinants of the recovery of right ventricular performance following experimental chronic right coronary artery occlusion. Circulation. 1993;88:696–708.

    PubMed  CAS  Google Scholar 

  51. Goldstein JA. Right heart ischemia: pathophysiology, natural history, and clinical management. Prog Cardiovasc Dis. 1998;40:325–41.

    PubMed  CAS  Google Scholar 

  52. Haber I, Metaxas DN, Geva T, Axel L. Three-dimensional systolic kinematics of the right ventricle. Am J Physiol Heart Circ Physiol. 2005;289:H1826–33.

    PubMed  CAS  Google Scholar 

  53. Klein SS, Graham TPJ, Lorenz CH. Noninvasive delineation of normal right ventricular contractile motion with magnetic resonance imaging myocardial tagging. Ann Biomed Eng. 1998;26:756–63.

    PubMed  CAS  Google Scholar 

  54. Young AA, Fayad ZA, Axel L. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol. 1996;271:H2677–88.

    PubMed  CAS  Google Scholar 

  55. Menteer J, Weinberg PM, Fogel MA. Quantifying regional right ventricular function in tetralogy of Fallot. J Cardiovasc Magn Reson. 2005;7:753–61.

    PubMed  Google Scholar 

  56. Bodhey NK, Beerbaum P, Sarikouch S, et al. Functional analysis of the components of the right ventricle in the setting of tetralogy of Fallot. Circ Cardiovasc Imaging. 2008;1:141–7.

    PubMed  Google Scholar 

  57. Bomma C, Dal D, Tandri H, et al. Regional differences in systolic and diastolic function in arrhythmogenic right ventricular dysplasia/cardiomyopathy using magnetic resonance imaging. Am J Cardiol. 2005;95:1507–11.

    PubMed  Google Scholar 

  58. Morcos M, Sheehan FH. Regional right ventricular wall motion in Tetralogy of Fallot: a three dimensional analysis. Int J Cardiovasc Imaging. 2013;29:1051–8.

    PubMed  Google Scholar 

  59. Goor DA, Lillehei CW. The anatomy of the heart. Congenital malformations of the heart. New York, NY: Grune & Stratton; 1975. p. 1–37.

    Google Scholar 

  60. Anderson RH, Baker EJ, Redington AN. Can we describe structure as well as function when accounting for the arrangement of the ventricular mass? Cardiol Young. 2000;10:247–60.

    PubMed  CAS  Google Scholar 

  61. Calcutteea A, Chung R, Lindqvist P, Hodson M, Henein MY. Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study. Heart. 2011;97(12):1004–11.

    PubMed  Google Scholar 

  62. Brecker SJ, Gibbs JS, Fox KM, Yacoub MH, Gibson DG. Comparison of Doppler derived haemodynamic variables and simultaneous high fidelity pressure measurements in severe pulmonary hypertension. Br Heart J. 1994;72(4):384–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Lindqvist P, Henein MY, Wikstrom G. Right ventricular myocardial velocities and timing estimate pulmonary artery systolic pressure. Int J Cardiol. 2009;137(2):130–6.

    PubMed  Google Scholar 

  64. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(12 Suppl S):40S–7.

    PubMed  Google Scholar 

  65. Posteraro A, Salustri A, Trambaiolo P, Amici E, Gambelli G. Echocardiographic estimation of pulmonary pressures. J Cardiovasc Med. 2006;7(7):545–54.

    Google Scholar 

  66. Currie PJ, Seward JB, Chan KL, et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6(4):750–6.

    PubMed  CAS  Google Scholar 

  67. Chan KL, Currie PJ, Seward JB, Hagler DJ, Mair DD, Tajik AJ. Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol. 1987;9(3):549–54.

    PubMed  CAS  Google Scholar 

  68. Daniels LB, Krummen DE, Blanchard DG. Echocardiography in pulmonary vascular disease. Cardiol Clin. 2004;22(3):383–99, vi.

    PubMed  Google Scholar 

  69. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11(4):307–32.

    PubMed  Google Scholar 

  70. Tossavainen E, Soderberg S, Gronlund C, Gonzalez M, Henein MY, Lindqvist P. Pulmonary artery acceleration time in identifying pulmonary hypertension patients with raised pulmonary vascular resistance. Eur Heart J Cardiovasc Imaging. 2013;14(9):890–7.

    PubMed  Google Scholar 

  71. Zimbarra Cabrita I, Ruisanchez C, Grapsa J, et al. Validation of the isovolumetric relaxation time for the estimation of pulmonary systolic arterial blood pressure in chronic pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2013;14:51–5.

    PubMed  Google Scholar 

  72. Morner S, Lindqvist P, Waldenstrom A, Kazzam E. Right ventricular dysfunction in hypertrophic cardiomyopathy as evidenced by the myocardial performance index. Int J Cardiol. 2008;124(1):57–63.

    PubMed  Google Scholar 

  73. Moller JE, Sondergaard E, Poulsen SH, Appleton CP, Egstrup K. Serial Doppler echocardiographic assessment of left and right ventricular performance after a first myocardial infarction. J Am Soc Echocardiogr. 2001;14(4):249–55.

    PubMed  CAS  Google Scholar 

  74. Schiller NB, Kwan DM. The Tei index as an expression of right ventricular impairment and recovery: investment grade or subprime? JACC Cardiovasc Imaging. 2009;2(2):150–2.

    PubMed  Google Scholar 

  75. Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    PubMed  Google Scholar 

  76. Grose R, Strain J, Yipintosoi T. Right ventricular function in valvular heart disease: relation to pulmonary artery pressure. J Am Coll Cardiol. 1983;2(2):225–32.

    PubMed  CAS  Google Scholar 

  77. Enriquez-Sarano M, Rossi A, Seward JB, Bailey KR, Tajik AJ. Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol. 1997;29:153–9.

    PubMed  CAS  Google Scholar 

  78. Ghio S, Temporelli PL, Klersy C, et al. Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail. 2013;15(4):408–14.

    PubMed  Google Scholar 

  79. Henein MY, O’Sullivan CA, Coats AJ, Gibson DG. Angiotensin-converting enzyme (ACE) inhibitors revert abnormal right ventricular filling in patients with restrictive left ventricular disease. J Am Coll Cardiol. 1998;32(5):1187–93.

    PubMed  CAS  Google Scholar 

  80. Segers VF, Brutsaert DL, De Keulenaer GW. Pulmonary hypertension and right heart failure in heart failure with preserved left ventricular ejection fraction: pathophysiology and natural history. Curr Opin Cardiol. 2012;27(3):273–80.

    PubMed  Google Scholar 

  81. Thenappan T, Shah SJ, Gomberg-Maitland M, et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4(3):257–65.

    PubMed  Google Scholar 

  82. Arcasoy SM, Christie JD, Ferrari VA, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med. 2003;167(5):735–40.

    PubMed  Google Scholar 

  83. Henein MY, Cailes J, O’Sullivan C, du Bois RM, Gibson DG. Abnormal ventricular long-axis function in systemic sclerosis. Chest. 1995;108(6):1533–40.

    PubMed  CAS  Google Scholar 

  84. Proudman SM, Stevens WM, Sahhar J, Celermajer D. Pulmonary arterial hypertension in systemic sclerosis: the need for early detection and treatment. Intern Med J. 2007;37(7):485–94.

    PubMed  CAS  Google Scholar 

  85. Florea VG, Florea ND, Sharma R, et al. Right ventricular dysfunction in adult severe cystic fibrosis. Chest. 2000;118(4):1063–8.

    PubMed  CAS  Google Scholar 

  86. Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Prognostic importance of quantitative echocardiographic evaluation in patients suspected of first non-massive pulmonary embolism. Eur J Echocardiogr. 2009;10(1):89–95.

    PubMed  Google Scholar 

  87. Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Quantitative measures of right ventricular dysfunction by echocardiography in the diagnosis of acute nonmassive pulmonary embolism. J Am Soc Echocardiogr. 2006;19(10):1264–71.

    PubMed  Google Scholar 

  88. Chemla D, Castelain V, Humbert M, et al. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest. 2004;126(4):1313–7.

    PubMed  Google Scholar 

  89. Bossone E, Bodini BD, Mazza A, Allegra L. Pulmonary arterial hypertension: the key role of echocardiography. Chest. 2005;127(5):1836–43.

    PubMed  Google Scholar 

  90. Opotowsky AR, Clair M, Afilalo J, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112(6):873–82.

    PubMed  Google Scholar 

  91. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41(6):1021–7.

    PubMed  Google Scholar 

  92. Lindqvist P, Soderberg S, Gonzalez MC, Tossavainen E, Henein MY. Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: a simultaneous Doppler echocardiography and cardiac catheterization study. Eur J Echocardiogr. 2011;12(12):961–6.

    PubMed  Google Scholar 

  93. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10(2):165–93.

    PubMed  Google Scholar 

  94. Goldstein JA. Right heart ischemia: pathophysiology, natural history, and clinical management. Prog Cardiovasc Dis. 1998;40(4):325–41.

    PubMed  CAS  Google Scholar 

  95. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107(3):526–31.

    PubMed  CAS  Google Scholar 

  96. Innelli P, Esposito R, Olibet M, Nistri S, Galderisi M. The impact of ageing on right ventricular longitudinal function in healthy subjects: a pulsed tissue Doppler study. Eur J Echocardiogr. 2009;10(4):491–8.

    PubMed  Google Scholar 

  97. Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr. 2006;7(6):430–8.

    PubMed  Google Scholar 

  98. Hsiao SH, Lin SK, Wang WC, Yang SH, Gin PL, Liu CP. Severe tricuspid regurgitation shows significant impact in the relationship among peak systolic tricuspid annular velocity, tricuspid annular plane systolic excursion, and right ventricular ejection fraction. J Am Soc Echocardiogr. 2006;19(7):902–10.

    PubMed  Google Scholar 

  99. Smith JL, Bolson EL, Wong SP, Hubka M, Sheehan FH. Three-dimensional assessment of two-dimensional technique for evaluation of right ventricular function by tricuspid annulus motion. Int J Cardiovasc Imaging. 2003;19(3):189–97.

    PubMed  CAS  Google Scholar 

  100. Lindqvist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional shortening: an applicable measure of right ventricular systolic function. Eur J Echocardiogr. 2003;4(1):29–35.

    PubMed  CAS  Google Scholar 

  101. Yamaguchi M, Tsuruda T, Watanabe Y, et al. Reduced fractional shortening of right ventricular outflow tract is associated with adverse outcomes in patients with left ventricular dysfunction. Cardiovasc Ultrasound. 2013;11:19.

    PubMed  PubMed Central  Google Scholar 

  102. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98(4):339–45.

    PubMed  CAS  Google Scholar 

  103. Do DH, Therrien J, Marelli A, Martucci G, Afilalo J, Sebag IA. Right atrial size relates to right ventricular end-diastolic pressure in an adult population with congenital heart disease. Echocardiography. 2011;28(1):109–16.

    PubMed  Google Scholar 

  104. Cioffi G, de Simone G, Mureddu G, Tarantini L, Stefenelli C. Right atrial size and function in patients with pulmonary hypertension associated with disorders of respiratory system or hypoxemia. Eur J Echocardiogr. 2007;8(5):322–31.

    PubMed  Google Scholar 

  105. McCrory DC, Coeytaux RR, Schmit KM, et al. Pulmonary arterial hypertension: screening, management, and treatment. Agency for Healthcare Research and Quality. Comparative Effectiveness Reviews 13-EHC087-EF; 2013.

    Google Scholar 

  106. Bustamante-Labarta M, Perrone S, De La Fuente RL, et al. Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr. 2002;15(10 Pt 2):1160–4.

    PubMed  Google Scholar 

  107. Sato T, Tsujino I, Oyama-Manabe N, et al. Right atrial volume and phasic function in pulmonary hypertension. Int J Cardiol. 2013;168(1):420–6.

    PubMed  Google Scholar 

  108. Lindqvist P, Holmgren A, Zhao Y, Henein MY. Effect of pericardial repair after aortic valve replacement on septal and right ventricular function. Int J Cardiol. 2012;155(3):388–93.

    PubMed  Google Scholar 

  109. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. quiz 786-688.

    PubMed  Google Scholar 

  110. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging. 2013;14(11):1106–14.

    PubMed  Google Scholar 

  111. Hoffmann R, Hanrath P. Tricuspid annular velocity measurement. Simple and accurate solution for a delicate problem? Eur Heart J. 2001;22(4):280–2.

    PubMed  CAS  Google Scholar 

  112. Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr. 2008;9(2):225–34.

    PubMed  Google Scholar 

  113. Rajagopalan N, Simon MA, Shah H, Mathier MA, Lopez-Candales A. Utility of right ventricular tissue Doppler imaging: correlation with right heart catheterization. Echocardiography. 2008;25(7):706–11.

    PubMed  Google Scholar 

  114. Lopez-Candales A, Dohi K, Rajagopalan N, et al. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3:23.

    PubMed  PubMed Central  Google Scholar 

  115. Lindqvist P, Waldenstrom A, Henein M, Morner S, Kazzam E. Regional and global right ventricular function in healthy individuals aged 20-90 years: a pulsed Doppler tissue imaging study: Umea General Population Heart Study. Echocardiography. 2005;22(4):305–14.

    PubMed  Google Scholar 

  116. Lam YY, Kaya MG, Goktekin O, Gatzoulis MA, Li W, Henein MY. Restrictive right ventricular physiology: its presence and symptomatic contribution in patients with pulmonary valvular stenosis. J Am Coll Cardiol. 2007;50(15):1491–7.

    PubMed  Google Scholar 

  117. Klein AL, Leung DY, Murray RD, Urban LH, Bailey KR, Tajik AJ. Effects of age and physiologic variables on right ventricular filling dynamics in normal subjects. Am J Cardiol. 1999;84(4):440–8.

    PubMed  CAS  Google Scholar 

  118. Mutlak D, Carasso S, Lessick J, Aronson D, Reisner SA, Agmon Y. Excessive respiratory variation in tricuspid regurgitation systolic velocities in patients with severe tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14(10):957–62.

    PubMed  Google Scholar 

  119. Polak JF, Holman BL, Wynne J, Colucci WS. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol. 1983;2(2):217–24.

    PubMed  CAS  Google Scholar 

  120. Juilliere Y, Barbier G, Feldmann L, Grentzinger A, Danchin N, Cherrier F. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J. 1997;18(2):276–80.

    PubMed  CAS  Google Scholar 

  121. Shah PK, Maddahi J, Staniloff HM, et al. Variable spectrum and prognostic implications of left and right ventricular ejection fractions in patients with and without clinical heart failure after acute myocardial infarction. Am J Cardiol. 1986;58(6):387–93.

    PubMed  CAS  Google Scholar 

  122. Mendes LA, Dec GW, Picard MH, Palacios IF, Newell J, Davidoff R. Right ventricular dysfunction: an independent predictor of adverse outcome in patients with myocarditis. Am Heart J. 1994;128(2):301–7.

    PubMed  CAS  Google Scholar 

  123. Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.

    PubMed  Google Scholar 

  124. Baker BJ, Wilen MM, Boyd CM, Dinh H, Franciosa JA. Relation of right ventricular ejection fraction to exercise capacity in chronic left ventricular failure. Am J Cardiol. 1984;54(6):596–9.

    PubMed  CAS  Google Scholar 

  125. Kjaergaard J, Akkan D, Iversen KK, Kober L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007;9(6–7):610–6.

    PubMed  Google Scholar 

  126. Haeck ML, Scherptong RW, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5(5):628–36.

    PubMed  Google Scholar 

  127. Sade LE, Ozin B, Atar I, Demir O, Demirtas S, Muderrisoglu H. Right ventricular function Is a determinant of long-term survival after cardiac resynchronization therapy. J Am Soc Echocardiogr. 2013;26(7):706–13.

    PubMed  Google Scholar 

  128. Ghio S, Freemantle N, Scelsi L, et al. Long-term left ventricular reverse remodelling with cardiac resynchronization therapy: results from the CARE-HF trial. Eur J Heart Fail. 2009;11(5):480–8.

    PubMed  Google Scholar 

  129. Neuhold S, Huelsmann M, Pernicka E, et al. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur Heart J. 2013;34(11):844–52.

    PubMed  CAS  Google Scholar 

  130. Maslow AD, Regan MM, Panzica P, Heindel S, Mashikian J, Comunale ME. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg. 2002;95:1507–18.

    PubMed  Google Scholar 

  131. Ternacle J, Berry M, Cognet T, et al. Prognostic value of right ventricular two-dimensional global strain in patients referred for cardiac surgery. J Am Soc Echocardiogr. 2013;26(7):721–6.

    PubMed  Google Scholar 

  132. Denault AY, Haddad F, Jacobsohn E, Deschamps A. Perioperative right ventricular dysfunction. Curr Opin Anaesthesiol. 2013;26(1):71–81.

    PubMed  Google Scholar 

  133. Zhao Y, Lindqvist P, Nilsson J, Holmgren A, Naslund U, Henein MY. Trans-catheter aortic valve implantation—early recovery of left and preservation of right ventricular function. Interact Cardiovasc Thorac Surg. 2011;12(1):35–9.

    PubMed  Google Scholar 

  134. Henein M, Waldenstrom A, Morner S, Lindqvist P. The normal impact of age and gender on right heart structure and function. Echocardiography. 2014;31:5–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence H. Sheehan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheehan, F.H., Lindqvist, P. (2015). Echocardiography of Chronic Right Heart Failure. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics