Skip to main content

Dual Regulation of Glutamatergic Transmission and Cognition by Stress in Prefrontal Cortex

  • Chapter
  • First Online:
  • 838 Accesses

Abstract

Corticosterone, the major stress hormone, serves as a key controller for neuronal responses that underlie behavioral adaptation, as well as maladaptive changes that lead to cognitive and emotional disturbances in stress-related mental disorders. The molecular and cellular mechanisms underlying the complex actions of corticosteroid stress hormones are largely unknown. Here we demonstrate that acute versus chronic stress exerts opposite effects on glutamatergic transmission in prefrontal cortex (PFC), which leads to opposing effects on PFC-dependent cognitive functions. Acute stress induces synaptic potentiation by increasing surface delivery of N-methyl-D-aspartate (NMDA)-type and α-amino-3-hydroxy-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptor channels via glucocorticoid/serum- and glucocorticoid-inducible kinase (SGK)/Rab4 signaling, resulting in enhanced working memory performance. In contrast, repeated stress induces synaptic depression by increasing the ubiquitin/proteasome-mediated degradation of NMDA and AMPA receptor subunits, resulting in impaired recognition memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPA:

α-amino-3-hydroxy-methyl-4-isoxazole propionic acid

NMDA:

N-methyl-D-aspartate

PFC:

Prefrontal cortex

GR:

Glucocorticoid receptor

MR:

Mineralocorticoid receptors

ESPC:

Excitatory postsynaptic current

SGK:

Serum- and glucocorticoid-inducible kinase

WM:

Working memory

TOR:

Temporal order recognition

DR:

Discrimination ratio

References

  • Barker GR, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27:2948–57.

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27:2781–7.

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40:427–46.

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Bennett MC, Fleshner M, Rose GM. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus. 1992;2:421–30.

    Article  CAS  PubMed  Google Scholar 

  • Dix S, Aggleton J. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res. 1999;99:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31:47–59.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14:477–85.

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Choquet D, Chaouloff F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci. 2008;11:868–70.

    Article  CAS  PubMed  Google Scholar 

  • Henckens MJ, van Wingen GA, Joëls M, Fernández G. Time-dependent corticosteroid modulation of prefrontal working memory processing. Proc Natl Acad Sci U S A. 2011;108:5801–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joëls M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci. 2006;27:244–50.

    Article  PubMed  Google Scholar 

  • Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ. Learning under stress: how does it work? Trends Cogn Sci. 2006;10:152–8.

    Article  PubMed  Google Scholar 

  • Kato A, Rouach N, Nicoll RA, Bredt DS. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci U S A. 2005;102:5600–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krugers HJ, Hoogenraad CC, Groc L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat Rev Neurosci. 2010;11:675–81.

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Cohen P. Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Sci STKE. 2001;2001(108):re17.

    CAS  PubMed  Google Scholar 

  • Lee JB, Wei J, Liu W, Cheng J, Feng J, Yan Z. Histone Deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J Physiol. 2012;90:1535–46.

    Article  Google Scholar 

  • Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F, Man HY. Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem. 2011;119:27–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lisman JE, Fellous JM, Wang XJ. A role for NMDA-receptor channels in working memory. Nat Neurosci. 1998;1:273–5.

    Article  CAS  PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–4.

    Article  CAS  PubMed  Google Scholar 

  • Liu W. Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic AMPA receptors via SGK regulation of the GDI-Rab4 complex. J Biol Chem. 2010;285:6101–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mabb AM, Ehlers MD. Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol. 2010;26:179–210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338:171–9.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    Article  PubMed  Google Scholar 

  • Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2002;22:2718–29.

    CAS  PubMed  Google Scholar 

  • Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron. 2003;40:881–4.

    Article  CAS  PubMed  Google Scholar 

  • Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2012;13:22–37.

    CAS  Google Scholar 

  • Schwarz LA, Hall BJ, Patrick GN. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J Neurosci. 2010;30:16718–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shors TJ. Stressful experience and learning across the lifespan. Annu Rev Psychol. 2006;57:55–85.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shors TJ, Weiss C, Thompson RF. Stress-induced facilitation of classical conditioning. Science. 1992;257:537–9.

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev Pharm Toxicol. 2002;42:165–79.

    Article  CAS  Google Scholar 

  • Wei J, Yuen EY, Liu W, Li X, Zhong P, Karatsoreos IN, McEwen BS, Yan Z Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry. 2013 (Epub ahead of print).

    Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci U S A. 2009;106:14075–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry. 2011;16:156–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73:962–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhen, Y. (2014). Dual Regulation of Glutamatergic Transmission and Cognition by Stress in Prefrontal Cortex. In: Popoli, M., Diamond, D., Sanacora, G. (eds) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1056-4_4

Download citation

Publish with us

Policies and ethics