Skip to main content

Regulation of Excitatory Synapses by Stress Hormones

  • Chapter
  • First Online:
Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders

Abstract

Shortly after stress, brain levels of many transmitters and hormones such as corticosterone are elevated. In the brain, corticosterone affects those cells that express high-affinity mineralocorticoid receptors (MRs) and/or lower-affinity glucocorticoid receptors (GRs). Principal neurons in the hippocampal cornus ammoni 1 (CA1) area and dentate gyrus abundantly express both MR and GR, while principal cells in the basolateral amygdala have high GR but relatively low MR levels. Neurons in all three areas quickly respond to corticosterone with an enhancement in spontaneous glutamatergic transmission, an effect that is nongenomic and involves MR. This rapid effect is transient in hippocampal cells but sustained in amygdala neurons. The areas differ in their slow gene-mediated response to corticosterone. Hippocampal CA1 cells show an increased current amplitude in response to spontaneously released glutamate-containing vesicles; synaptically evoked responses are generally unaffected. The number of action potentials during a period of depolarization is attenuated, via a slow GR-dependent pathway. By contrast, basolateral amygdala neurons show higher excitability and more efficient transfer of action potentials several hours after corticosteroid exposure. The dichotomy between the two areas could explain why emotional aspects of stressful events are generally better retained than neutral aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHP:

Afterhyperpolarization

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BLA:

Basolateral amygdala

BSA:

Bovine serum albumin

CA1:

Cornus ammoni 1

(m)EPSC/EPSP:

(Miniature) Excitatory postsynaptic current/potential

ERK:

Extracellular signal-regulated kinase

GR:

Glucocorticoid receptor

LTD:

Long-term depression

LTP:

Long-term potentiation

MEK:

Mitogen-activated protein kinase kinase

MR:

Mineralocorticoid receptor

NMDA:

N-methyl-D-aspartate

References

  • Abercrombie HC, Kalin NH, Thurow ME, Rosenkranz MA, Davidson RJ. Cortisol variation in humans affects memory for emotionally laden and neutral information. Behav Neurosci. 2003;117:505–16.

    Article  CAS  PubMed  Google Scholar 

  • Avital A, Segal M, Richter-Levin G. Contrasting roles of corticosteroid receptors in hippocampal plasticity. J Neurosci. 2006;26:9130–4.

    Article  CAS  PubMed  Google Scholar 

  • Beck SG, List TJ, Choi KC. Long- and short-term administration of corticosterone alters CA1 hippocampal neuronal properties. Neuroendocrinology. 1994;60:261–72.

    Article  CAS  PubMed  Google Scholar 

  • Biddie SC, Hager GL. Glucocorticoid receptor dynamics and gene regulation. Stress. 2009;12:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Blank T, Nijholt I, Eckart K, Spiess J. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J Neurosci. 2002;22:3788–94.

    CAS  PubMed  Google Scholar 

  • Bramham CR, Southard T, Ahlers ST, Sarvey JM. Acute cold stress leading to elevated corticosterone neither enhances synaptic efficacy nor impairs LTP in the dentate gyrus of freely moving rats. Brain Res. 1998;789:245–55.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan TW, Lovallo WR. Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology. 2001;26:307–17.

    Article  CAS  PubMed  Google Scholar 

  • Chameau P, Qin Y, Spijker S, Smit AB, Joëls M. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol. 2007;97:5–14.

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Yang CH, Huang CC, Hsu KS. Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology. 2010;35:1605–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Croce A, Astier H, Récasens M, Vignes M. Opposite effects of alpha 1- and beta-adrenoceptor stimulation on both glutamate- and gamma-aminobutyric acid-mediated spontaneous transmission in cultured rat hippocampal neurons. J Neurosci Res. 2003;71:516–25.

    Article  CAS  PubMed  Google Scholar 

  • Datson NA, Morsink MC, Meijer OC, de Kloet ER. Central corticosteroid actions: search for gene targets. Eur J Pharmacol. 2008;583:272–89.

    Article  CAS  PubMed  Google Scholar 

  • De Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.

    Article  CAS  PubMed  Google Scholar 

  • Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–7.

    CAS  PubMed  Google Scholar 

  • Di S, Malcher-Lopes R, Marcheselli VL, Bazan NG, Tasker JG. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology. 2005;146:4292–301.

    Article  CAS  PubMed  Google Scholar 

  • Duvarci S, Pare D. Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci. 2007;27:4482–91.

    Article  CAS  PubMed  Google Scholar 

  • Evans RM, Arriza JL. A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron. 1989;2:1105–12.

    Article  CAS  PubMed  Google Scholar 

  • Funder JW. Minireview: Aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology. 2010;151:5098–102.

    Article  CAS  PubMed  Google Scholar 

  • Gereau RW 4th, Conn PJ. Presynaptic enhancement of excitatory synaptic transmission by beta-adrenergic receptor activation. J Neurophysiol 1994;72:1438–42.

    CAS  PubMed  Google Scholar 

  • Groc L, Choquet D, Chaouloff F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci. 2008;11:868–70.

    Article  CAS  PubMed  Google Scholar 

  • Gutièrrez-Mecinas M, Trollope AF, Collins A, Morfett H, Hesketh SA, Kersanté F, Reul JM. Long-lasting behavioral responses to stress involve a direct interaction of glucocorticoid receptors with ERK1/2-MSK1-Elk-1 signaling. Proc Natl Acad Sci U S A. 2011;108:13806–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P, Augustine GJ. Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci. 1998;1(2):9–35.

    Google Scholar 

  • Hirata R, Togashi H, Matsumoto M, Yamaguchi T, Izumi T, Yoshioka M. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats. Brain Res. 2008;1226:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhang M, Czeh B, Flugge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology. 2010;35:1693–707.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, McEwen BS, Pfaff DW. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A. 2012;109:17657–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joels M, de Kloet ER. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science. 1989;245:1502–5.

    Article  CAS  PubMed  Google Scholar 

  • Joels M, de Kloet ER. Corticosteroid actions on amino acid-mediated transmission in rat CA1 hippocampal cells. J Neurosci. 1993;13:4082–90.

    CAS  PubMed  Google Scholar 

  • Joels M, Velzing E, Nair S, Verkuyl JM, Karst H. Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur J Neurosci. 2003;18:1315–24.

    Article  CAS  PubMed  Google Scholar 

  • Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev. 2012;64:901–38.

    Article  PubMed  Google Scholar 

  • Karst H, Joels M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol. 2005;94:3479–86.

    Article  CAS  PubMed  Google Scholar 

  • Karst H, Wadman WJ, Joëls M. Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Res. 1994;649:234–42.

    Article  CAS  PubMed  Google Scholar 

  • Karst H, Karten YJ, Reichardt HM, de Kloet ER, Schutz G, Joels M. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci. 2000;3:977–8.

    Article  CAS  PubMed  Google Scholar 

  • Karst H, Nair S, Velzing E, Rumpff-van Essen L, Slagter E, Shinnick-Gallagher P, Joels M. Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons. Eur J Neurosci. 2002;16:1083–9.

    Article  PubMed  Google Scholar 

  • Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A. 2005;102:19204–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karst H, Berger S, Erdmann G, Schutz G, Joels M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci U S A. 2010;107:14449–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kavushansky A, Richter-Levin G. Effects of stress and corticosterone on activity and plasticity in the amygdala. J Neurosci Res. 2006;84:1580–7.

    Article  CAS  PubMed  Google Scholar 

  • Kavushansky A, Vouimba RM, Cohen H, Richter-Levin G. Activity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress. Hippocampus. 2006;16:35–42.

    Article  PubMed  Google Scholar 

  • Kerr DS, Campbell LW, Hao SY, Landfield PW. Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science. 1989;245:1505–9.

    Article  CAS  PubMed  Google Scholar 

  • Kerr DS, Campbell LW, Thibault O, Landfield PW. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2 + conductances: relevance to brain aging. Proc Natl Acad Sci U S A. 1992;89:8527–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3:453–62.

    CAS  PubMed  Google Scholar 

  • Kim JJ, Lee HJ, Welday AC, Song E, Cho J, Sharp PE, Jung MW, Blair HT. Stress-induced alterations in hippocampal plasticity, place cells, and spatial memory. Proc Natl Acad Sci U S A. 2007;104:18297–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhlmann S, Wolf OT. Arousal and cortisol interact in modulating memory consolidation in healthy young men. Behav Neurosci. 2006;120:217–23.

    Article  CAS  PubMed  Google Scholar 

  • Liebmann L, Karst H, Sidiropoulou K, van Gemert N, Meijer OC, Poirazi P, Joels M. Differential effects of corticosterone on the slow afterhyperpolarization in the basolateral amygdala and CA1 region: possible role of calcium channel subunits. J Neurophysiol. 2008;99:958–68.

    Article  CAS  PubMed  Google Scholar 

  • Liebmann L, Karst H, Joels M. Effects of corticosterone and the beta-agonist isoproterenol on glutamate receptor-mediated synaptic currents in the rat basolateral amygdala. Eur J Neurosci. 2009;30:800–7.

    Article  PubMed  Google Scholar 

  • Lightman SL, Conway-Campbell BL. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci. 2010;11:710–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang C, Ni X, Sun J. A rapid inhibition of NMDA receptor current by corticosterone in cultured hippocampal neurons. Neurosci Lett. 2007;420:245–50.

    Article  CAS  PubMed  Google Scholar 

  • Maggio N, Segal M. Differential corticosteroid modulation of inhibitory synaptic currents in the dorsal and ventral hippocampus. J Neurosci. 2009;29:2857–66.

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Henley JM, Holman D, Zhou M, Wiegert O, van Spronsen M, Joels M, Hoogenraad CC, Krugers HJ. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE. 2009;4:e4714.

    Article  PubMed Central  PubMed  Google Scholar 

  • McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory consolidation. Neurosci Biobehav Rev. 2012;36:1750–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Olijslagers JE, de Kloet ER, Elgersma Y, van Woerden GM, Joels M, Karst H. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci. 2008;27:2542–50.

    Article  CAS  PubMed  Google Scholar 

  • Orchinik M, Murray TF, Moore FL. A corticosteroid receptor in neuronal membranes. Science. 1991;252:1848–51.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt KD, Hoffer BJ, Browning MD. Norepinephrine and isoproterenol increase the phosphorylation of synapsin I and synapsin II in dentate slices of young but not aged Fisher 344 rats. Proc Natl Acad Sci U S A. 1991;88:2361–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pasricha N, Joels M, Karst H. Rapid effects of corticosterone in the mouse dentate gyrus via a nongenomic pathway. J Neuroendocrinol. 2011;23:143–7.

    Article  CAS  PubMed  Google Scholar 

  • Passecker J, Hok V, Della-Chiesa A, Chah E, O’Mara SM. Dissociation of dorsal hippocampal regional activation under the influence of stress in freely behaving rats. Front Behav Neurosci. 2011;5:66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pavlides C, Ogawa S, Kimura A, McEwen BS. Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res. 1996;738:229–35.

    Article  CAS  PubMed  Google Scholar 

  • Pfaff DW, Silva MT, Weiss JM. Telemetered recording of hormone effects on hippocampal neurons. Science. 1971;172:394–5.

    Article  CAS  PubMed  Google Scholar 

  • Pu Z, Krugers HJ, Joels M. Corticosterone time-dependently modulates beta-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learn Mem. 2007;14:359–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pu Z, Krugers HJ, Joels M. Beta-adrenergic facilitation of synaptic plasticity in the rat basolateral amygdala in vitro is gradually reversed by corticosterone. Learn Mem. 2009;16:155–60.

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Champagne DL, Peters M, Catania EH, Weeber EJ, Levitt P, Pimenta AF. Loss of limbic system-associated membrane protein leads to reduced hippocampal mineralocorticoid receptor expression, impaired synaptic plasticity, and spatial memory deficit. Biol Psychiatry. 2010;68:197–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Hesketh SA, Collins A, Mecinas MG. Epigenetic mechanisms in the dentate gyrus act as a molecular switch in hippocampus-associated memory formation. Epigenetics. 2009;4:434–9.

    Article  CAS  PubMed  Google Scholar 

  • Revest JM, Kaouane N, Mondin M, Le Roux A, Rougé-Pont F, Vallée M, Barik J, Tronche F, Desmedt A, Piazza PV. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry. 2010;15:1140–51.

    Article  CAS  PubMed Central  Google Scholar 

  • Rey M, Carlier E, Soumireu-Mourat B. Effects of corticosterone on hippocampal slice electrophysiology in normal and adrenalectomized BALB/c mice. Neuroendocrinology. 1987;46:424–9.

    Article  CAS  PubMed  Google Scholar 

  • Rimmele U, Domes G, Mathiak K, Hautzinger M. Cortisol has different effects on human memory for emotional and neutral stimuli. Neuroreport. 2003;14:2485–8.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci. 2005;25:8725–34.

    Article  PubMed  Google Scholar 

  • Roozendaal B, Hernandez A, Cabrera SM, Hagewoud R, Malvaez M, Stefanko DP, Haettig J, Wood MA. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J Neurosci. 2010;30:5037–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teschemacher A, Zeise ML, Zieglgansberger W. Corticosterone-induced decrease of inhibitory postsynaptic potentials in rat hippocampal pyramidal neurons in vitro depends on cytosolic factors. Neurosci Lett. 1996;215:83–6.

    Article  CAS  PubMed  Google Scholar 

  • Tse YC, Bagot RC, Hutter JA, Wong AS, Wong TP. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus. PLoS ONE. 2011;6:e27215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    Article  CAS  PubMed  Google Scholar 

  • Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol. 2008;583:194–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Gemert NG, Carvalho DM, Karst H, van der Laan S, Zhang M, Meijer OC, Hell JW, Joels M. Dissociation between rat hippocampal CA1 and dentate gyrus cells in their response to corticosterone: effects on calcium channel protein and current. Endocrinology. 2009;150:4615–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Stegeren AH, Roozendaal B, Kindt M, Wolf OT, Joëls M. Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiol Learn Mem. 2010;93:56–65.

    Article  CAS  PubMed  Google Scholar 

  • Vidal C, Jordan W, Zieglgansberger W. Corticosterone reduces the excitability of hippocampal pyramidal cells in vitro. Brain Res. 1986;383:54–9.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger C, Hollenberg SM, Ong ES, Harmon JM, Brower ST, Cidlowski J, Thompson EB, Rosenfeld MG, Evans RM. Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science. 1985;228:740–2.

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313:1093–7.

    Article  CAS  PubMed  Google Scholar 

  • Wiegert O, Joels M, Krugers H. Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learn Mem. 2006;13:110–3.

    Article  CAS  PubMed  Google Scholar 

  • Wyrwoll CS, Holmes MC, Seckl JR. 11beta-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol. 2011;32:265–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada K, McEwen BS, Pavlides C. Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats. Exp Brain Res. 2003;152:52–9.

    Article  CAS  PubMed  Google Scholar 

  • Zeise ML, Teschemacher A, Arriagada J, Zieglgansberger W. Corticosterone reduces synaptic inhibition in rat hippocampal and neocortical neurons in vitro. J Neuroendocrinol. 1992;4:107–12.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sheng H, Qi J, Ma B, Sun J, Li S, Ni X. Glucocorticoid acts on a putative G-protein coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons. Am J Physiol Endocrinol Metab. 2012;302:E747–58.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang F, Zhang Y. Corticosterone inhibits generation of long-term potentiation in rat hippocampal slice: involvement of brain-derived neurotrophic factor. Brain Res. 2000;885:182–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Hoogenraad CC, Joëls M, Krugers HJ. Combined β-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons. J Psychopharmacol. 2012;26:516–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Joëls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joëls, M., Krugers, H., Karst, H. (2014). Regulation of Excitatory Synapses by Stress Hormones. In: Popoli, M., Diamond, D., Sanacora, G. (eds) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1056-4_2

Download citation

Publish with us

Policies and ethics