Skip to main content

Evidence of Glutamatergic Dysfunction in the Pathophysiology of Schizophrenia

  • Chapter
  • First Online:
Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders

Abstract

Abnormalities of the glutamate system are widely recognized to be involved in the pathophysiology of schizophrenia, though the exact mechanism is still unclear. Accumulating evidence from postmortem studies has implicated alterations in several components of glutamatergic synapses, including abnormalities of glutamate receptors and transporters. These data support the hypothesis that expression, trafficking, and downstream signaling pathways of N-methyl-D-aspartate (NMDA) receptors are altered in this illness. Changes in glutamate transporter expression suggest there may be chronic glutamate spillover from the synaptic cleft, leading to increased activation of extrasynaptic glutamate receptors. We propose that changes in NMDA-subtype glutamate receptor function and glutamate transporter expression are components of a common pathophysiological pathway leading to the schizophrenia phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NMDA:

N-methyl-D-aspartate

CRH:

Corticotropin-releasing hormone

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

GluA:

Glutamate receptor AMPA-subtype

EAAT:

Excitatory amino acid transporter

CSF:

Cerebrospinal fluid

PCP:

Phencyclidine

LTP:

Long-term potentiation

LTD:

Long-term depression

GluN:

Glutamate receptor NMDA-subtype

EEA1:

Early endosome Antigen

VGLUT:

Vesicular glutamate transporter

xCT:

Cystine-glutamate antiporter

PSD95:

Postsynaptic density 95

SynGAP:

Synaptic GTPase activating protein

References

  • Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE Jr, Jones EG. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci. 1996;16(1):19–30.

    CAS  PubMed  Google Scholar 

  • Alamilla J, Gillespie DC. Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive. Neuroscience. 2011;196:285–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alda M, Ahrens B, Lit W, Dvorakova M, Labelle A, Zvolsky P, Jones B. Age of onset in familial and sporadic schizophrenia. Acta Psychiatr Scand. 1996;93(6):447–50.

    CAS  PubMed  Google Scholar 

  • Alfredsson G, Wiesel FA. Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology (Berl). 1989;99(3):322–7.

    CAS  Google Scholar 

  • Ambrosini A, Bresciani L, Fracchia S, Brunello N, Racagni G. Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro. Mol Pharmacol. 1995;47(5):1057–64.

    CAS  PubMed  Google Scholar 

  • Anderson G, Maes M. Schizophrenia: Linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:5–19.

    CAS  PubMed  Google Scholar 

  • Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, Gassmann M, Messing A, Klein R, Schwab MH, Lloyd KC, Lai C. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci. 2004;7(12):1319–28.

    CAS  PubMed  Google Scholar 

  • Aoki C, Venkatesan C, Go CG, Mong JA, Dawson TM. Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J Neurosci. 1994;14(9):5202–22.

    CAS  PubMed  Google Scholar 

  • Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron. 2000;28(1):165–81.

    CAS  PubMed  Google Scholar 

  • Armstrong N, Sun Y, Chen G, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature. 1998;395(6705):913–7.

    CAS  PubMed  Google Scholar 

  • Ashby M, De La Rue S, Ralph G, Uney J, Collingridge G, Henley J. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci. 2004;24(22):5172–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashby MC, Maier SR, Nishimune A, Henley JM. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci. 2006;26(26):7046–55.

    CAS  PubMed  Google Scholar 

  • Association PA. Diagnostic and statistical manual of mental disorders. Washington, D.C.: American Psychiatric Association; 2000.

    Google Scholar 

  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry. 2006;163(5):927–9.

    PubMed  Google Scholar 

  • Badcock JC. The cognitive neuropsychology of auditory hallucinations: a parallel auditory pathways framework. Schizophr Bull. 2010;36(3):576–84.

    PubMed Central  PubMed  Google Scholar 

  • Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience. 1997;77(1):65–73.

    CAS  PubMed  Google Scholar 

  • Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I. Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology. 2008;33(7):1760–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer D, Gupta D, Harotunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res. 2008;104(1–3):108–20.

    PubMed Central  PubMed  Google Scholar 

  • Bauer D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res. 2010;117(1):92–8.

    PubMed Central  PubMed  Google Scholar 

  • Beattie E, Carroll R, Yu X, Morishita W, Yasuda H, von Zastrow M, Malenka R. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci. 2000;3(12):1291–300.

    CAS  PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science. 2000;289(5481):957–60.

    CAS  PubMed  Google Scholar 

  • Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse. 2006;60(8): 585–98.

    CAS  PubMed  Google Scholar 

  • Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;33(9):2175–86.

    CAS  PubMed  Google Scholar 

  • Bhugra D. The global prevalence of schizophrenia. PLoS Med. 2005;2(5):e151 (quiz e175).

    PubMed Central  PubMed  Google Scholar 

  • Blencowe BJ, Khanna M. Molecular biology: RNA in control. Nature. 2007;447(7143):391–3.

    CAS  PubMed  Google Scholar 

  • Boehm J, Kang M, Johnson R, Esteban J, Huganir R, Malinow R. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron. 2006;51(2):213–25.

    CAS  PubMed  Google Scholar 

  • Bossong MG, Niesink RJ. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol. 2010;92(3):370–85.

    CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR. Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res. 2001a;49(1–2):171–8.

    CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001b;156(2–3):234–58.

    CAS  Google Scholar 

  • Bridges R, Lutgen V, Lobner D, Baker AM. Thinking outside the cleft to understand synaptic activity: Contribution of the cystine-glutamate antiporter (system xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev. 2012;64(3).

    Google Scholar 

  • Bronson SL, Ahlbrand R, Horn PS, Kern JR, Richtand NM. Individual differences in maternal response to immune challenge predict offspring behavior: contribution of environmental factors. Behav Brain Res. 2011;220(1):55–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32(2):200–2.

    PubMed Central  PubMed  Google Scholar 

  • Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93(1):23–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr Res. 2005;75(1):27–34.

    PubMed  Google Scholar 

  • Buchanan RW, Carpenter WT. Schizophrenia: introduction and overview. In: Sadock BJ, Sadock VA, Editors. Comprehensive textbook of psychiatry. Vol. 1. Philadelphia: Lippincott, Williams, and Wilkins; 2000. pp. 1096–110.

    Google Scholar 

  • Burbaeva G, Savushkina OK, Dmitriev AD. Brain isoforms of creatine kinase in health and mental diseases: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk. 1999;1:20–24.

    PubMed  Google Scholar 

  • Carlborg A, Jokinen J, Jonsson EG, Erhardt S, Nordstrom P. CSF kynurenic acid and suicide risk in schizophrenia spectrum psychosis. Psychiatry Res. 2013;205(1–2):165–7.

    CAS  PubMed  Google Scholar 

  • Carroll R, Beattie E, Xia H, L Cüscher, Altschuler Y, Nicoll R, Malenka R, von Zastrow M. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci U S A. 1999;96(24):14112–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007;447(7143):497–500.

    CAS  PubMed  Google Scholar 

  • Chen Y, Dube CM, Rice CJ, Baram TZ. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci. 2008;28(11):2903–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark JF, Doepke A, Filosa JA, Wardle RL, Lu A, Meeker TJ, Pyne-Geithman GJ. N-acetylaspartate as a reservoir for glutamate. Med Hypotheses. 2006;67(3):506–12.

    CAS  PubMed  Google Scholar 

  • Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH. Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry. 2003;160(6):1100–9.

    PubMed  Google Scholar 

  • Clinton SM, Meador-Woodruff JH. Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2004;29(7):1353–62.

    CAS  PubMed  Google Scholar 

  • Contractor A, Heinemann SF. Glutamate receptor trafficking in synaptic plasticity. Sci STKE. 2002;156:re14.

    Google Scholar 

  • Coyle J. The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry. 1996;3(5):241–53.

    CAS  PubMed  Google Scholar 

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    CAS  PubMed  Google Scholar 

  • Deep-Soboslay A, Benes FM, Haroutunian V, Ellis JK, Kleinman JE, Hyde TM. Psychiatric brain banking: three perspectives on current trends and future directions. Biol Psychiatry. 2011;69(2):104–12.

    PubMed Central  PubMed  Google Scholar 

  • Dev KK, Henley JM. The regulation of AMPA receptor-binding sites. Mol Neurobiol. 1998;17(1–3):33–58.

    CAS  PubMed  Google Scholar 

  • Dev KK, Nishimune A, Henley JM, Nakanishi S. The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology. 1999;38(5):635–44.

    CAS  PubMed  Google Scholar 

  • Diamond JS. Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci. 2001;21(21):8328–38.

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis S. The glutamate receptor ion channels. Pharmacol Rev. 1999;51(1):7–61.

    CAS  PubMed  Google Scholar 

  • Drummond JB, Simmons M, Haroutunian V, Meador-Woodruff JH. Upregulation of cornichon transcripts in the dorsolateral prefrontal cortex in schizophrenia. Neuroreport. 2012;23(17):1031–4.

    CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res. 2005;73(2–3):159–72.

    CAS  PubMed  Google Scholar 

  • Ehlers M. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 2000;28(2):511–25.

    CAS  PubMed  Google Scholar 

  • Ehlers M. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6(3):231–42.

    CAS  PubMed  Google Scholar 

  • Ehlers MD, Tingley WG, Huganir RL. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science. 1995;269(5231):1734–7.

    CAS  PubMed  Google Scholar 

  • Emamian ES, Karayiorgou M, Gogos JA. Decreased phosphorylation of NMDA receptor type 1 at serine 897 in brains of patients with schizophrenia. J Neurosci. 2004;24(7):1561–4.

    CAS  PubMed  Google Scholar 

  • English JA, Dicker P, Focking M, Dunn MJ, Cotter DR. 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics. 2009;9(12):3368–82.

    CAS  PubMed  Google Scholar 

  • Fanous AH, Zhou B, Aggen SH, Bergen SE, Amdur RL, Duan J, Sanders AR, Shi J, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Freedman R, Dudbridge F, Holmans PA, Ripke S, Gejman PV, Kendler KS, Levinson DF, Schizophrenia C, Psychiatric Genome-Wide Association Study. Genome-wide association study of clinical dimensions of schizophrenia: polygenic effect on disorganized symptoms. Am J Psychiatry. 2012;169(12):1309–17.

    PubMed Central  PubMed  Google Scholar 

  • Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport. 2001;12(15):3257–62.

    CAS  PubMed  Google Scholar 

  • Fleischhacker W. Negative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinction. Encephale 2000;26(Spec No 1):12–4.

    PubMed  Google Scholar 

  • Focking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry. 2011;68(5):477–88.

    CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm J-Mathisen, Edwards RH. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron. 2001;31(2):247–60.

    CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm J-Mathisen, Reimer RJ, Chaudhry FA, Edwards RH. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A. 2002;99(22):14488–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm J-Mathisen, Chaudhry FA, Nicoll RA, Edwards RH. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science. 2004a;304(5678):1815–9.

    CAS  Google Scholar 

  • Fremeau RY Jr, Voglmaier S, Seal RP, Edwards RH. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 2004b;27(2):98–103.

    CAS  Google Scholar 

  • Fujiyama F, Furuta T, Kaneko T. Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol. 2001;435(3):379–87.

    CAS  PubMed  Google Scholar 

  • Funk AJ, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH. Abnormal activity of the MAPK- and cyclic adenosine monophosphate-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology. 2012;37(4):896–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH. Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport. 2009;20(11):1019–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P, Davis KL. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry. 1997;54(6):559–66.

    CAS  PubMed  Google Scholar 

  • Gallinat J, Gotz T, Kalus P, Bajbouj M, Sander T, Winterer G. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. J Cogn Neurosci. 2007;19(1):59–68.

    PubMed  Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry. 2000;157(7):1141–9.

    CAS  PubMed  Google Scholar 

  • Gattaz WF, Gasser T, Beckmann H. Multidimensional analysis of the concentrations of 17 substances in the CSF of schizophrenics and controls. Biol Psychiatry. 1985;20(4):360–6.

    CAS  PubMed  Google Scholar 

  • Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB. Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci. 2011;31(50):18275–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gershon ES, Alliey-Rodriguez N, Liu C. After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. Am J Psychiatry. 2011;168(3):253–6.

    PubMed  Google Scholar 

  • Ghose S, Weickert CS, Colvin SM, Coyle JT, Herman MM, Hyde TM, Kleinman JE. Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia. Neuropsychopharmacology. 2004;29(1):117–25.

    CAS  PubMed  Google Scholar 

  • Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48(4):308–20.

    CAS  PubMed  Google Scholar 

  • Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159(7):1165–73.

    PubMed  Google Scholar 

  • Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001;158(9):1367–77.

    CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT. D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry. 1996;153(12):1628–30.

    CAS  PubMed  Google Scholar 

  • Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry. 1999;45(4):512–4.

    CAS  PubMed  Google Scholar 

  • Gordon MW. Neuronal plasticity and memory. Am J Orthopsychiatry. 1969;39(4):578–94.

    CAS  PubMed  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, Mestikawy SEl. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci. 2002;22(13):5442–51.

    CAS  PubMed  Google Scholar 

  • Greger I, Esteban J. AMPA receptor biogenesis and trafficking. Curr Opin Neurobiol. 2007;17(3):289–97.

    CAS  PubMed  Google Scholar 

  • Greger I, Ziff E, Penn A. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 2007;30(8):407–16.

    CAS  PubMed  Google Scholar 

  • Grimwood S, Slater P, Deakin JF, Hutson PH. NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. Neuroreport. 1999;10(3):461–5.

    CAS  PubMed  Google Scholar 

  • Groc L, Choquet D, Chaouloff F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci. 2008;11(8):868–70.

    CAS  PubMed  Google Scholar 

  • Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH. Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse. 2005;57(3):123–31.

    CAS  PubMed  Google Scholar 

  • Hahn CG. A Src link in schizophrenia. Nat Med. 2011;17(4):425–7.

    CAS  PubMed  Google Scholar 

  • Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med. 2006;12(7):824–8.

    CAS  PubMed  Google Scholar 

  • Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR, Kleinman JE, Lipska BK. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol Psychiatry. 2003;8(9):797–810.

    CAS  PubMed  Google Scholar 

  • Halpain S, Girault JA, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature. 1990;343(6256):369–72.

    CAS  PubMed  Google Scholar 

  • Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador JH-Woodruff. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology. 2010;35(10):2110–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond JC, McCullumsmith RE, Haroutunian V, Meador JH-Woodruff. Endosomal trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Schizophr Res. 2011;130(1–3):260–5.

    PubMed Central  PubMed  Google Scholar 

  • Hanley JG. Endosomal sorting of AMPA receptors in hippocampal neurons. Biochem Soc Trans. 2010;38(2):460–5.

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 2002;5(5):405–14.

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003;60(6):572–6.

    CAS  PubMed  Google Scholar 

  • Heim C, Newport DJ, Wagner D, Wilcox MM, Miller AH, Nemeroff CB. The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women: a multiple regression analysis. Depress Anxiety. 2002;15(3):117–25.

    PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463(7278):232–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry. 2004;55(2):165–71.

    CAS  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry. 2005;57(6):577–85.

    CAS  PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El SM. The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci. 2001;21(22):RC181.

    CAS  PubMed  Google Scholar 

  • Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, Mestikawy SEl. Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience. 2004;123(4):983–1002.

    CAS  PubMed  Google Scholar 

  • Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem. 2006;99(3):1011–8.

    CAS  PubMed  Google Scholar 

  • Hirling H. Endosomal trafficking of AMPA-type glutamate receptors. Neuroscience. 2008;158:36–44.

    PubMed  Google Scholar 

  • Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108.

    CAS  PubMed  Google Scholar 

  • Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron. 1994;13(6):1331–43.

    CAS  PubMed  Google Scholar 

  • Holloway T, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ, Gonzalez-Maeso J. Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic Glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci. 2013;33(3):1088–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin VV-Arbelet, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci. 2012;32(17):6000–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtzman CW, Trotman HD, Goulding SM, Ryan AT, McDonald AN, Shapiro DI, Brasfield JL, Walker EF. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience. 2013;249:172–91.

    CAS  PubMed  Google Scholar 

  • Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY, Arango V, Mann JJ, Dwork AJ, Trimble WS. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex. 2002;12(4):349–56.

    PubMed  Google Scholar 

  • Horiuchi Y, Iida S, Koga M, Ishiguro H, Iijima Y, Inada T, Watanabe Y, Someya T, Ujike H, Iwata N, Ozaki N, Kunugi H, Tochigi M, Itokawa M, Arai M, Niizato K, Iritani S, Kakita A, Takahashi H, Nawa H, Arinami T. Association of SNPs linked to increased expression of SLC1A1 with schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(1):30–7.

    PubMed  Google Scholar 

  • Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189(4):619–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Illarionova BN, Gunnarson E, Li Y, Brismar H, Bondar A, Zelenin S, Aperia A. Functional and molecular interactions between aquaporins and Na, K-ATPase. Neuroscience. 2010;168(4):915–25.

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301–8.

    CAS  PubMed  Google Scholar 

  • Jiang J, Suppiramaniam V, Wooten M. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity. Neurosignals. 2006;15(5):266–82.

    CAS  PubMed  Google Scholar 

  • Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31.

    CAS  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F. Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res. 2002;42(4):243–50.

    CAS  PubMed  Google Scholar 

  • Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull. 2010;83(3–4):108–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, C’Souza D, Saksa J, Woods SW, Javitt DC. High dose D-serine in the treatment of schizophrenia. Schizophr Res. 2010;121(1–3):125–30.

    PubMed Central  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Heilig M, Holmes A. Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry. 2008;64(9):810–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A. Assessment of glutamate transporter glutamate aspartate transporter (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology. 2009;34(6):1578–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato AS, Gill MB, Yu H, Nisenbaum ES, Bredt DS. TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci. 2010;33(5):241–8.

    CAS  PubMed  Google Scholar 

  • Kay SR. Significance of the positive-negative distinction in schizophrenia. Schizophr Bull. 1990;16(4):635–52.

    CAS  PubMed  Google Scholar 

  • Kharazia VN, Weinberg RJ. Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol. 1999;412(2):292–302.

    CAS  PubMed  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980;20(3):379–82.

    CAS  PubMed  Google Scholar 

  • Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophr Bull. 2004;30(2):279–93.

    PubMed  Google Scholar 

  • Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature. 1998;392(6672):193–7.

    CAS  PubMed  Google Scholar 

  • Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O’Carroll CM, Martin SJ, Morris RG, O’Dell TJ, Grant SG. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22(22):9721–32.

    CAS  PubMed  Google Scholar 

  • Korpi ER, Kaufmann CA, Marnela KM, Weinberger DR. Cerebrospinal fluid amino acid concentrations in chronic schizophrenia. Psychiatry Res. 1987;20(4):337–45.

    CAS  PubMed  Google Scholar 

  • Kraguljac NV, Reid MA, White DM, den Hollander J, Lahti AC. Regional decoupling of N-acetyl-aspartate and glutamate in schizophrenia. Neuropsychopharmacology. 2012b;37(12):2635–42.

    CAS  Google Scholar 

  • Kristensen K, Cadenhead KS. Cannabis abuse and risk for psychosis in a prodromal sample. Psychiatry Res. 2007;151(1–2):151–4.

    PubMed Central  PubMed  Google Scholar 

  • Kristiansen L, Beneyto M, Haroutunian V, Meador-Woodruff J. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry. 2006;11(8):737–47, 705.

    CAS  PubMed  Google Scholar 

  • Kristiansen L, Bakir B, Haroutunian V, Meador-Woodruff J. Expression of the NR2B-NMDA receptor trafficking complex in prefrontal cortex from a group of elderly patients with schizophrenia. Schizophr Res. 2010a;119:198–209.

    CAS  Google Scholar 

  • Kristiansen L, Patel S, Haroutunian V, Meador-Woodruff J. Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse. 2010b;64(7):495–502.

    CAS  Google Scholar 

  • Kropf M, Rey G, Glauser L, Kulangara K, Johnsson K, Hirling H. Subunit-specific surface mobility of differentially labeled AMPA receptor subunits. Eur J Cell Biol. 2008;87(10):763–78.

    CAS  PubMed  Google Scholar 

  • Kullmann DM, Asztely F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 1998;21(1):8–14.

    CAS  PubMed  Google Scholar 

  • Lahti AC, Tamminga CA. Recent developments in the neuropharmacology of schizophrenia. Am J Health Syst Pharm. 1995;52(3 Suppl 1):S5–8.

    CAS  PubMed  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport. 1995;6(6):869–72.

    CAS  PubMed  Google Scholar 

  • Lalli E, Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cyclic adenosine monophosphate. J Biol Chem. 1994;269(26):17359–62.

    CAS  PubMed  Google Scholar 

  • Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry. 2006;60(6):645–9.

    CAS  PubMed  Google Scholar 

  • Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol. 2010;13(4):451–60.

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry. 1999;46(1):56–72.

    CAS  PubMed  Google Scholar 

  • Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5(6):363–75.

    PubMed  Google Scholar 

  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.

    CAS  PubMed  Google Scholar 

  • Lauriat TL, Dracheva S, Chin B, Schmeidler J, McInnes LA, Haroutunian V. Quantitative analysis of glutamate transporter mRNA expression in prefrontal and primary visual cortex in normal and schizophrenic brain. Neuroscience. 2006;137(3):843–51.

    CAS  PubMed  Google Scholar 

  • Lea P, Custer S, Vicini S, Faden A. Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacol Biochem Behav. 2002;73(2):287–98.

    CAS  PubMed  Google Scholar 

  • Lee MR, Ruby CL, Hinton DJ, Choi S, Adams CA, Young KN, Choi DS. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice. Neuropsychopharmacology. 2013;38(3):437–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, Eskin A. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci. 2002;5(2):155–61.

    CAS  PubMed  Google Scholar 

  • Levinson DF, Shi J, Wang K, Oh S, Riley B, Pulver AE, Wildenauer DB, Laurent C, Mowry BJ, Gejman PV, Owen MJ, Kendler KS, Nestadt G, Schwab SG, Mallet J, Nertney D, Sanders AR, Williams NM, Wormley B, Lasseter VK, Albus M, Godard S-Bauche, Alexander M, Duan J, O’Donovan MC, Walsh D, O’Neill A, Papadimitriou GN, Dikeos D, Maier W, Lerer B, Campion D, Cohen D, Jay M, Fanous A, Eichhammer P, Silverman JM, Norton N, Zhang N, Hakonarson H, Gao C, Citri A, Hansen M, Ripke S, Schizophrenia Psychiatric GC, Dudbridge F, Holmans PA. Genome-wide association study of multiplex schizophrenia pedigrees. Am J Psychiatry. 2012;169(9):963–73.

    PubMed  Google Scholar 

  • Levy LM, Warr O, Attwell D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na + -dependent glutamate uptake. J Neurosci. 1998;18(23):9620–8.

    CAS  PubMed  Google Scholar 

  • Lewis DA, Gonzalez-Burgos G. Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology. 2008;33(1):141–65.

    PubMed  Google Scholar 

  • Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002;25:409–32.

    CAS  PubMed  Google Scholar 

  • Lewis DA, Volk DW, Hashimoto T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl). 2004;174(1):143–50.

    CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Morris HM. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotox Res. 2008;14(2–3):237–48.

    PubMed Central  PubMed  Google Scholar 

  • Li B, Woo RS, Mei L, Malinow R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron. 2007;54(4):583–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Devidze N, Barengolts D, Prostak N, Sphicas E, Apicella AJ, Malinow R, Emamian ES. NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci. 2009a;29(38):11965–72.

    CAS  Google Scholar 

  • Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, Chung S, Chua SE, Sham PC, Wu EX, McAlonan GM. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One. 2009b;4(7):e6354.

    Google Scholar 

  • Liguz-Lecznar M, Skangiel-Kramska J. Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars). 2007;67(3):207–18.

    Google Scholar 

  • Liu DD, Yang Q, Li ST. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull. 2012;93:10–6.

    PubMed  Google Scholar 

  • Liu XB, Murray KD, Jones EG. Switching of NMDA receptor 2 A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci. 2004;24(40):8885–95.

    CAS  PubMed  Google Scholar 

  • Lowy MT, Gault L, Yamamoto BK. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem. 1993;61(5):1957–60.

    CAS  PubMed  Google Scholar 

  • Lu W, Ziff EB. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron. 2005;47(3):407–21.

    CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress? Science. 1999;285(5435):1870–4.

    CAS  PubMed  Google Scholar 

  • Malinow R. AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003;358(1432):707–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcaggi P, Attwell D. Short- and long-term depression of rat cerebellar parallel fibre synaptic transmission mediated by synaptic crosstalk. J Physiol. 2007;578(Pt 2):545–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000;12(3):501–27.

    CAS  PubMed  Google Scholar 

  • Markiv A, Rambaruth ND, Dwek MV. Beyond the genome and proteome: targeting protein modifications in cancer. Curr Opin Pharmacol. 2012;12(4):408–13.

    CAS  PubMed  Google Scholar 

  • Marwaha S, Johnson S. Schizophrenia and employment—a review. Soc Psychiatry Psychiatr Epidemiol. 2004;39(5):337–49.

    PubMed  Google Scholar 

  • Masson J, Sagne C, Hamon M, Mestikawy SEl. Neurotransmitter transporters in the central nervous system. Pharmacol Rev. 1999;51(3):439–64.

    CAS  PubMed  Google Scholar 

  • McCullumsmith RE, Meador-Woodruff JH. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology. 2002;26(3):368–75.

    CAS  PubMed  Google Scholar 

  • McCullumsmith RE, Meador-Woodruff JH. Novel approaches to the study of postmortem brain in psychiatric illness: old limitations and new challenges. Biol Psychiatry. 2011;69(2):127–33.

    PubMed  Google Scholar 

  • McCullumsmith RE, Clinton SM, Meador-Woodruff JH. Schizophrenia as a disorder of neuroplasticity. Int Rev Neurobiol. 2004;59:19–45.

    CAS  PubMed  Google Scholar 

  • McCullumsmith RE, Hammond J, Funk A, Meador-Woodruff JH. Recent advances in targeting the ionotropic glutamate receptors in treating schizophrenia. Curr Pharm Biotechnol. 2012;13(8):1535–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKenna MC. Glutamate dehydrogenase in brain mitochondria: Do lipid modifications and transient metabolon formation influence enzyme activity?. Neurochem Int. 2011;59(4):525–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meador-Woodruff JH, Hogg AJ Jr, Smith RE. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull. 2001;55(5):631–40.

    CAS  PubMed  Google Scholar 

  • Mirnics K, Middleton F, Marquez A, Lewis D, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 2000;28(1):53–67.

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281(5381):1349–52.

    CAS  PubMed  Google Scholar 

  • Morris BJ, Cochran SM, Pratt JA. PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol. 2005;5(1):101–6.

    CAS  PubMed  Google Scholar 

  • Muller N. Inflammation and the glutamate system in schizophrenia: implications for therapeutic targets and drug development. Expert Opin Ther Targets. 2008;12(12):1497–507.

    PubMed  Google Scholar 

  • Muller N, Myint AM, Schwarz MJ. Inflammation in schizophrenia. Adv Protein Chem Struct Biol. 2012;88:49–68.

    PubMed  Google Scholar 

  • Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE. 2010;5(1):e8566.

    PubMed Central  PubMed  Google Scholar 

  • Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci. 1999;868:515–25.

    CAS  PubMed  Google Scholar 

  • Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S. The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem. 2006;98(4):1007–18.

    CAS  PubMed  Google Scholar 

  • Novak G, Fan T, O’Dowd BF, George SR. Postnatal maternal deprivation and pubertal stress have additive effects on dopamine D2 receptor and CaMKII beta expression in the striatum. Int J Dev Neurosci. 2013;31:189–95.

    CAS  PubMed  Google Scholar 

  • Nudmamud-Thanoi S, Piyabhan P, Harte MK, Cahir M, Reynolds GP. Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. J Neural Transm. 2007;Suppl(72):281–5.

    CAS  Google Scholar 

  • O’Shea RD. Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol. 2002;29(11):1018–23.

    PubMed  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res. 1998;56(1–2):207–17.

    CAS  PubMed  Google Scholar 

  • Ohnuma T, Kato H, Arai H, Faull RL, McKenna PJ, Emson PC. Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport. 2000a;11(14):3133–7.

    CAS  Google Scholar 

  • Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC. Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Res Mol Brain Res. 2000b;85(1–2):24–31.

    CAS  Google Scholar 

  • Okabe S, Miwa A, Okado H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci. 1999;19(18):7781–92.

    CAS  PubMed  Google Scholar 

  • Olney JW. The toxic effects of glutamate and related compounds in the retina and the brain. Retina. 1982;2(4):341–59.

    CAS  PubMed  Google Scholar 

  • Oni-Orisan A, Kristiansen L, Haroutunian V, Meador-Woodruff J, McCullumsmith R. Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry. 2008;63(8):766–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–46.

    CAS  PubMed  Google Scholar 

  • Park M, Penick E, Edwards J, Kauer J, Ehlers M. Recycling endosomes supply AMPA receptors for LTP. Science. 2004;305(5692):1972–5.

    CAS  PubMed  Google Scholar 

  • Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron. 2006;52(5):817–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Passafaro M, Piëch V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci. 2001;4(9):917–26.

    CAS  PubMed  Google Scholar 

  • Patel DR, Young AM, Croucher MJ. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated stimulation of glutamate and GABA release in the rat striatum in vivo: a dual-label microdialysis study. Neuroscience. 2001;102(1):101–11.

    CAS  PubMed  Google Scholar 

  • Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, Cotter DR. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry. 2008;13(12):1102–17.

    CAS  PubMed  Google Scholar 

  • Perry TL. Normal cerebrospinal fluid and brain glutamate levels in schizophrenia do not support the hypothesis of glutamatergic neuronal dysfunction. Neurosci Lett. 1982;28(1):81–5.

    CAS  PubMed  Google Scholar 

  • Petralia RS, Wang YX, Mayat E, Wenthold RJ. Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol. 1997;385(3):456–76.

    CAS  PubMed  Google Scholar 

  • Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ. Organization of NMDA receptors at extrasynaptic locations. Neuroscience. 2010;167(1):68–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med. 2011;17(4):470–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potkin SG, Jin Y, Bunney BG, Costa J, Gulasekaram B. Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry. 1999;156(1):145–7.

    CAS  PubMed  Google Scholar 

  • Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, Manoach DS, Belger A, Diaz M, Wible CG, Ford JM, Mathalon DH, Gollub R, Lauriello J, O’Leary D, van Erp TG, Toga AW, Preda A, Lim KO, FBIRN. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull. 2009;35(1):19–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajji TK, Mulsant BH. Nature and course of cognitive function in late-life schizophrenia: a systematic review. Schizophr Res. 2008;102(1–3):122–40.

    PubMed  Google Scholar 

  • Rajkowska G, Selemon LD, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry. 1998;55(3):215–24.

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel JJ-Hidalgo, Makkos Z, Meltzer H, Overholser J, Stockmeier C. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res. 2002;57(2–3):127–38.

    PubMed  Google Scholar 

  • Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord. 2012;136(1–2):63–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol. 2009;186(1):85–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds LM, Cochran SM, Morris BJ, Pratt JA, Reynolds GP. Chronic phencyclidine administration induces schizophrenia-like changes in N-acetylaspartate and N-acetylaspartylglutamate in rat brain. Schizophr Res. 2005;73(2–3):147–52.

    PubMed  Google Scholar 

  • Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry. 2000;47(1):22–8.

    CAS  PubMed  Google Scholar 

  • Richtand NM, McNamara RK. Serotonin and dopamine interactions in psychosis prevention. Prog Brain Res. 2008;172:141–53.

    CAS  PubMed  Google Scholar 

  • Rose ME, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR. Glutamate transporter coupling to Na, K-ATPase. J Neurosci. 2009;29(25):8143–55.

    CAS  PubMed  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens C. The tetrameric structure of a glutamate receptor channel. Science. 1998;280(5369):1596–9.

    CAS  PubMed  Google Scholar 

  • Roy PD, Zipursky RB, Saint-Cyr JA, Bury A, Langevin R, Seeman MV. Temporal horn enlargement is present in schizophrenia and bipolar disorder. Biol Psychiatry. 1998;44(6):418–22.

    CAS  PubMed  Google Scholar 

  • Rubino M, Miaczynska M, Lippé R, Zerial M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem. 2000;275(6):3745–8.

    CAS  PubMed  Google Scholar 

  • Rubio MD, Haroutunian V, Meador-Woodruff JH. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry. 2012;71(10):906–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan TJ, Grant SG. The origin and evolution of synapses. Nat Rev Neurosci. 2009;10(10):701–12.

    CAS  PubMed  Google Scholar 

  • Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B. Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord. 2006;8(2):133–43.

    CAS  PubMed  Google Scholar 

  • Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, Jonas P, Schulte U, Fakler B, Klocker N. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science. 2009;323(5919):1313–9.

    CAS  PubMed  Google Scholar 

  • Scimemi A, Fine A, Kullmann DM, Rusakov DA. NR2B-containing receptors mediate cross talk among hippocampal synapses. J Neurosci. 2004;24(20):4767–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry. 1995;52(10):805–18 (discussion 819–20).

    CAS  PubMed  Google Scholar 

  • Setou M, Nakagawa T, Seog DH, Hirokawa N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science. 2000;288(5472):1796–802.

    CAS  PubMed  Google Scholar 

  • Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res. 2013;144:1–8.

    PubMed Central  PubMed  Google Scholar 

  • Shashidharan P, Huntley GW, Murray JM, Buku A, Moran T, Walsh MJ, Morrison JH, Plaitakis A. Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. Brain Res. 1997;773(1–2):139–48.

    CAS  PubMed  Google Scholar 

  • Sheng M, Lee SH. Growth of the NMDA receptor industrial complex. Nat Neurosci. 2000;3(7):633–5.

    CAS  PubMed  Google Scholar 

  • Shi S, Hayashi Y, Esteban JA, Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell. 2001;105(3):331–43.

    CAS  PubMed  Google Scholar 

  • Skeberdis V, Lan J, Opitz T, Zheng X, Bennett M, Zukin R. mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology. 2001;40(7):856–65.

    CAS  PubMed  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry. 2001;158(9):1393–9.

    CAS  PubMed  Google Scholar 

  • Sodhi MS, Simmons M, McCullumsmith R, Haroutunian V, Meador-Woodruff JH. Glutamatergic gene expression is specifically reduced in thalamocortical projecting relay neurons in schizophrenia. Biol Psychiatry. 2011;70(7):646–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song I, Huganir R. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002;25(11):578–88.

    CAS  PubMed  Google Scholar 

  • Sossa K, Court B, Carroll R. NMDA receptors mediate calcium-dependent, bidirectional changes in dendritic PICK1 clustering. Mol Cell Neurosci. 2006;31(3):574–85.

    CAS  PubMed  Google Scholar 

  • Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron. 2000;28(3):887–98.

    CAS  PubMed  Google Scholar 

  • Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, Myint AM. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry. 2012;13(7):482–92.

    PubMed  Google Scholar 

  • Stephenson FA. Structure and trafficking of NMDA and GABAA receptors. Biochem Soc Trans. 2006;34(Pt 5):877–81.

    CAS  PubMed  Google Scholar 

  • Swanson GT, Kamboj SK, Cull-Candy SG. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci. 1997;17(1):58–69.

    CAS  PubMed  Google Scholar 

  • Szoke A, Meary A, Trandafir A, Bellivier F, Roy I, Schurhoff F, Leboyer M. Executive deficits in psychotic and bipolar disorders - implications for our understanding of schizoaffective disorder. Eur Psychiatry. 2008;23(1):20–5.

    PubMed  Google Scholar 

  • Takamori S, Riedel D, Jahn R. Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J Neurosci. 2000;20(13):4904–11.

    CAS  PubMed  Google Scholar 

  • Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999;2(7):618–24.

    CAS  PubMed  Google Scholar 

  • Talbot K, Ong WY, Blake DJ, Tang J, Louneva N, Carlson GC, Arnold SE. Dysbindin-1 and its protein family. In: Lajtha A, Javitt D, Kantrowitz J, Editors. Handbook of neurochemistry and molecular neurobiology. USA: Springer US; 2009. pp. 107–241.

    Google Scholar 

  • Tamminga C. Glutamatergic aspects of schizophrenia. Br J Psychiatry. 1999; Suppl(37):2–15.

    Google Scholar 

  • Thompson KN, Phillips LJ, Komesaroff P, Yuen HP, Wood SJ, Pantelis C, Velakoulis D, Yung AR, McGorry PD. Stress and HPA-axis functioning in young people at ultra high risk for psychosis. J Psychiatr Res. 2007;41(7):561–9.

    CAS  PubMed  Google Scholar 

  • Toro C, Deakin JF. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res. 2005;80(2–3):323–30.

    PubMed  Google Scholar 

  • Torrey EF. Surviving schizophrenia: a manual for families, patients and providers. New York: Harper Collins; 2006.

    Google Scholar 

  • Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, Nawa H. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res. 2002a;110(3):249–57.

    CAS  Google Scholar 

  • Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K, Nakamura R, Niizato K, Watanabe M, Kakita A, Takahashi H, Someya T, Nawa H. Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem. 2002b;83(4):797–806.

    CAS  Google Scholar 

  • Triller A, Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 2005;28(3):133–9.

    CAS  PubMed  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998;44(11):1081–9.

    CAS  PubMed  Google Scholar 

  • Tsai EG, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des. 2010;16(5):522–37.

    CAS  PubMed  Google Scholar 

  • Tsvetkov E, Shin RM, Bolshakov VY. Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron. 2004;41(1):139–51.

    CAS  PubMed  Google Scholar 

  • Tuominen H, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res. 2005;72(2–3):225–34.

    PubMed  Google Scholar 

  • Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935–47.

    CAS  PubMed  Google Scholar 

  • Uezato A, Meador-Woodruff JH, McCullumsmith RE. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord. 2009;11(7):711–25.

    CAS  PubMed  Google Scholar 

  • Walaas IS, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. Regional I and cellular distribution in the rat brain. J Neurosci. 1984;4(1):84–98.

    CAS  PubMed  Google Scholar 

  • Wang JK, Walaas SI, Greengard P. Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. J Neurosci. 1988;8(1):281–8.

    CAS  PubMed  Google Scholar 

  • Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. Motor discoordination and increased susceptibility to cerebellar injury in glutamate aspartate transportera mutant mice. Eur J Neurosci. 1998;10(3):976–88.

    CAS  PubMed  Google Scholar 

  • Watson GB, Bolanowski MA, Baganoff MP, Deppeler CL, Lanthorn TH. D-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Res. 1990;510(1):158–60.

    CAS  PubMed  Google Scholar 

  • Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci. 1996;16(6):1982–9.

    CAS  PubMed  Google Scholar 

  • Whiteheart S, Matveeva E. Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor. J Struct Biol. 2004;146(1–2):32–43.

    CAS  PubMed  Google Scholar 

  • Wobrock T, Schneider M, Kadovic D, Schneider-Axmann T, Ecker UK, Retz W, Rosler M, Falkai P. Reduced cortical inhibition in first-episode schizophrenia. Schizophr Res. 2008;105(1–3):52–261.

    Google Scholar 

  • Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull. 2010;36(2):211–8.

    PubMed Central  PubMed  Google Scholar 

  • Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M, Aggarwal J. The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry. 2005;66(9):1122–9.

    PubMed  Google Scholar 

  • Zanello A, Curtis L, Badan Ba M, Merlo MC. Working memory impairments in first-episode psychosis and chronic schizophrenia. Psychiatry Res. 2009;165(1–2):10–8.

    PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383(6601):634–7.

    CAS  PubMed  Google Scholar 

  • Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology. 2010;58(2):465–73.

    CAS  PubMed  Google Scholar 

  • Zuo Z, Fang H. Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes. J Exp Biol. 2005;208(Pt 11):2063–70.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.E. McCullumsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hammond, J., Shan, D., Meador-Woodruff, J., McCullumsmith, R. (2014). Evidence of Glutamatergic Dysfunction in the Pathophysiology of Schizophrenia. In: Popoli, M., Diamond, D., Sanacora, G. (eds) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1056-4_15

Download citation

Publish with us

Policies and ethics