Skip to main content

Pathology in Astroglia, Glutamate, and GABA in Major Depressive Disorder: Evidence from Studies of Human Postmortem Tissue

  • Chapter
  • First Online:
Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders

Abstract

Evidence will be reviewed for pathology in astroglial cells, and for glutamate and γ-aminobutyric acid (GABA) neurons, their receptors and transporters in human postmortem brain tissue from subjects diagnosed with major depressive disorder (MDD). These observations will be compared with similar endpoints in preclinical animal models of chronic stress. Repeated stressful experiences or stressful life events can be risk factors for the onset or relapse of depressive episodes. Thus, animal studies on the behavioral and biological responses to exposure to chronic stress may shed light on underlying pathological mechanisms relevant to findings in postmortem brain tissue from subjects that experienced depression. Moreover, dysfunction of astrocytes, glutamate, and GABA—vital components of the tripartite synapse—will be proposed as a major source of fundamental pathology in depression and related animal behavioral models. Finally, the role of glutamate-based drugs in treating depressive symptoms will be discussed. In summary, evidence from postmortem brain tissue in MDD and animal models related to depression supports the hypothesis that pathology in astrocytes, glutamate, and GABA systems may be fundamental to the pathophysiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin 4

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

BDNF:

Brain derived neurotrophic factor

Ca + 2 :

Calcium

CA1:

Ammoni horn region 1

CA3:

Ammoni horn region 3

CNS:

Central nervous system

EAAT1:

Excitatory amino acid transporter-1

EAAT2:

Excitatory amino acid transporter-2

GABA:

γ-aminobutyric acid

GAD:

Glutamic acid decarboxylase

GC1:

Mitochondrial glutamate carrier

GFAP:

Glial fibrillary acidic protein

GLAST:

Glutamate–aspartate transporter

GLT1:

Glutamate transporter 1

GluR1:

AMPA receptor subunit 1

GluR2:

AMPA receptor subunit 2

GluR3:

AMPA receptor subunit 3

GluR4:

AMPA receptor subunit 4

GluR5:

Kainate receptor subunit 5

GRINA:

Glutamate receptor ionotropic NMDA-associated protein 1

IR:

Immunoreactive

MDD:

Major depressive disorder

mGluR5:

Metabotropic glutamate receptor 5

mRNA:

Messenger ribonucleic acid

mTOR:

Mammalian target of rapamycin

NeuN:

Neuronal nuclei (neuron-specific nuclear protein)

NMDA:

N-methyl-D-aspartate

NR1:

NMDA receptor 1

NR2A:

NMDA receptor 2A

NR2B:

NMDA receptor 2B

NR2C:

NMDA receptor 2C

PSD95:

Postsynaptic density protein 95

SAP102:

Synapse-associated protein 102

SSRI:

Serotonin-selective reuptake inhibitor

References

  • Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord. 2010;12:541–9.

    PubMed  Google Scholar 

  • Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32:1–14.

    CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.

    CAS  PubMed  Google Scholar 

  • Araya-Callís C, Hiemke C, Abumaria N, Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl). 2012;224:209–22.

    Google Scholar 

  • Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry. 2000;47:305–13.

    CAS  PubMed  Google Scholar 

  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry. 2010;15:501–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64:863–70.

    PubMed Central  PubMed  Google Scholar 

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacol. 2007;32:1888–902.

    CAS  Google Scholar 

  • Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse. 2006;60:585–98.

    CAS  PubMed  Google Scholar 

  • Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacol. 2008;33:2175–86.

    CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  PubMed  Google Scholar 

  • Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry. 2011;16:634–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004;7:613–20.

    CAS  PubMed  Google Scholar 

  • Blomstrand F, Aberg ND, Eriksson PS, Hansson E, Rönnbäck L. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience. 1999;92:255–65.

    CAS  PubMed  Google Scholar 

  • Bowers G, Cullinan WE, Herman JP. Region-specific regulation of glutamic acid decarboxylase (GAD) mrna expression in central stress circuits. J Neurosci. 1998;18:5938–47.

    CAS  PubMed  Google Scholar 

  • Bowley MP, Drevets WC, Ongür D, Price JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002;52:404–12.

    PubMed  Google Scholar 

  • Braun K, Antemano R, Helmeke C, Büchner M, Poeggel G. Juvenile separation stress induces rapid region- and layer-specific changes in S100ss- and glial fibrillary acidic protein-immunoreactivity in astrocytes of the rodent medial prefrontal cortex. Neuroscience. 2009;160:629–38.

    CAS  PubMed  Google Scholar 

  • Chandley MJ, Szebeni K, Szebeni A, Crawford J, Stockmeier CA, Turecki G, et al. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci. 2013;38:276–84.

    PubMed Central  PubMed  Google Scholar 

  • Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA. 2005;102:15653–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci. 2013;14:311–21.

    CAS  PubMed  Google Scholar 

  • Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002b;51:377–86.

    CAS  Google Scholar 

  • Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002a;12:386–94.

    Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58:545–53.

    CAS  PubMed  Google Scholar 

  • Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: Evidences and functional consequences. Eur Neuropsychopharmacol. 2013;23:171–85.

    PubMed  Google Scholar 

  • Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology. 2006;31:1616–26.

    PubMed  Google Scholar 

  • D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A. 2007;104:1995–2000.

    PubMed Central  PubMed  Google Scholar 

  • Davis S, Thomas A, Perry R, Oakley A, Kalaria RN, O’Brien JT. Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. J Neurol Neurosurg Psychiatry. 2002;73:556–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168:727–34.

    PubMed Central  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    CAS  PubMed  Google Scholar 

  • Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, Jurjus GJ, Dieter L, Duman RS Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, et al. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl). 2010b;201:393–406.

    Google Scholar 

  • Elizalde N, Pastor PM, Garcia-Garcia AL, Serres F, Venzala E, Huarte J, et al. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem. 2010a;114:1302–14.

    CAS  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91–100.

    CAS  PubMed  Google Scholar 

  • Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, et al. Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry. 2011;70:312–9.

    CAS  PubMed  Google Scholar 

  • Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:70–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta A, Takashima S, Yokoo H, Rothstein JD, Wada K, Iwaki T. Expression of glutamate transporter subtypes during normal human corticogenesis and type II lissencephaly. Brain Res Dev Brain Res. 2005;155:155–64.

    CAS  PubMed  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009;66:275–82.

    CAS  PubMed  Google Scholar 

  • Giaume C, Theis M. Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res Rev. 2010;63:160–76.

    CAS  PubMed  Google Scholar 

  • Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord. 2012;136:1232–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gittins RA, Harrison PJ. A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord. 2011;133:328–32.

    PubMed  Google Scholar 

  • Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience. 2009;159:915–25.

    CAS  PubMed  Google Scholar 

  • Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC, et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:126–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gronli J, Fiske E, Murison R, Bjorvatn B, Sorensen E, Ursin R, et al. Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behav Brain Res. 2007;181:42–51.

    PubMed  Google Scholar 

  • Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319.

    PubMed  Google Scholar 

  • Hashimoto K, Sawa A. Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007;62:1310–6.

    CAS  PubMed  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193–200.

    CAS  PubMed  Google Scholar 

  • Herberg LJ, Rose IC. Excitatory amino acid pathways in brain-stimulation reward. Behav Brain Res. 1990;39:230–39.

    CAS  PubMed  Google Scholar 

  • Herman JP, Larson BR. Differential regulation of forebrain glutamic acid decarboxylase mrna expression by aging and stress. Brain Res. 2001;912:60–6.

    CAS  PubMed  Google Scholar 

  • Herman JP, Renda A, Bodie B. Norepinephrine-gamma-aminobutyric acid (GABA) interaction in limbic stress circuits: effects of reboxetine on gabaergic neurons. Biol Psychiatry. 2003;53:166–74.

    CAS  PubMed  Google Scholar 

  • Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012;36:2085–117.

    CAS  PubMed  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res. 2004;124:114–23.

    CAS  PubMed  Google Scholar 

  • Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus. 2011;21:877–84.

    CAS  PubMed  Google Scholar 

  • Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci. 1978;35:147–55.

    CAS  PubMed  Google Scholar 

  • Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1774–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • John CS, Smith KL, Van’t Veer A, Gompf HS, Carlezon WA Jr, Cohen BM, et al. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacol. 2012;37:2467–75.

    CAS  Google Scholar 

  • Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karolewicz B, Maciag D, O’Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13:411–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karolewicz B, Stockmeier CA, Ordway GA. Elevated levels of the NR2C subunit of the NMDA receptor in the locus coeruleus in depression. Neuropsychopharmacology. 2005 Aug;30(8):1557–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009;12:143–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem. 1991;56:720–23.

    CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry. 2001;158:582–86.

    CAS  PubMed  Google Scholar 

  • Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.

    CAS  PubMed  Google Scholar 

  • Khundakar A, Morris C, Oakley A, Thomas AJ. A morphometric examination of neuronal and glial cell pathology in the orbitofrontal cortex in late-life depression. Int Psychogeriatr. 2011a;23:132–40.

    Google Scholar 

  • Khundakar AA, Morris CM, Oakley AE, Thomas AJ. Cellular pathology within the anterior cingulate cortex of patients with late-life depression: a morphometric study. Psychiatry Res. 2011b;194:184–9.

    Google Scholar 

  • Khundakar AA, Thomas AJ. Morphometric changes in early- and late-life major depressive disorder: evidence from postmortem studies. Int Psychogeriatr. 2009;21:844–54.

    PubMed  Google Scholar 

  • Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience. 2004;129:851–60.

    CAS  PubMed  Google Scholar 

  • Knable MB, Torrey EF, Webster MJ, Bartko JJ. Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull. 2001;55:651–9.

    CAS  PubMed  Google Scholar 

  • Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. 2009;32:160–9.

    CAS  PubMed  Google Scholar 

  • Kristiansen LV, Meador-Woodruff JH. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res. 2005;78:87–93.

    PubMed  Google Scholar 

  • Krugers HJ, Hoogenraad CC, Groc L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat Rev Neurosci. 2010;11:675–81.

    CAS  PubMed  Google Scholar 

  • Law AJ, Deakin JF. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mrna in the psychoses. Neuroreport. 2001;12:2971–4.

    CAS  PubMed  Google Scholar 

  • Lee Y, Gaskins D, Anand A, Shekhar A. Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology (Berl). 2007;191:55–65.

    Google Scholar 

  • Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, et al. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci. 2013;38:183–91.

    PubMed Central  PubMed  Google Scholar 

  • Lepack A, Chowdhury GMI, Duric V, Maldonado-Aviles JG, Behar KL, Banasr M, et al. Chronic stress alters rates of GABA synthesis, and reduces expression of GAD67, calbindin and other GABA-related proteins in the frontal cortex of rats. Biol Psychiatry. 2013;73:123S.

    Google Scholar 

  • Leventopoulos M, Rüedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J. Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res. 2007;1142:119–26.

    CAS  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, et al. MTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li YK, Wang F, Wang W, Wu PF, Xiao JL, Hu ZL, et al. Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology. 2012;37:1867–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lou JS, Li CY, Yang XC, Fang J, Yang YX, Guo JY. Protective effect of gan mai da zao decoction in unpredictable chronic mild stress-induced behavioral and biochemical alterations. Pharm Biol. 2010;48:1328–36.

    PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Uytterhoeven M, Vrydags N, Bosmans E. The inflammatory & neurodegenerative (I & ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24:27–53.

    CAS  PubMed  Google Scholar 

  • Maciag D, Hughes J, O’Dwyer G, Pride Y, Stockmeier CA, Sanacora G, et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry. 2010;67:465–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazure CM, Bruce ML, Maciejewski PK, Jacobs SC. Adverse life events and cognitive-personality characteristics in the prediction of major depression and antidepressant response. Am J Psychiatry. 2000;157:896–903.

    CAS  PubMed  Google Scholar 

  • Meshorer E, Biton IE, Ben-Shaul Y, Ben-Ari S, Assaf Y, Soreq H, et al. Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB J. 2005;19:910–22.

    CAS  PubMed  Google Scholar 

  • Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93:421–43.

    CAS  PubMed  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psych Medicine. 2003;33:1277–84.

    CAS  Google Scholar 

  • Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry. 2000;48:861–73.

    CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Rajkowska G, Stockmeier CA. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord. 2010;127:230–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Wilson BA, Meshram A, Rajkowska G, Hussain S, Stockmeier CA. Biochemical and immunohistochemical evidence for reduced Gap junction-forming connexin 43 in the orbitofrontal cortex in alcohol dependence and depression. Biol Psychiatry. 2012;71:55S.

    Google Scholar 

  • Mirza Y, Tang J, Russell A, Banerjee SP, Bhandari R, Ivey J, et al. Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. J Am Acad Child Adolesc Psychiatry. 2004;43:341–8.

    PubMed  Google Scholar 

  • Monroe SM, Torres LD, Guillaumot J, Harkness KL, Roberts JE, Frank E, et al. Life stress and the long-term treatment course of recurrent depression: III. Nonsevere life events predict recurrence for medicated patients over 3 years. J Consult Clin Psychol. 2006;74:112–20.

    PubMed  Google Scholar 

  • Müller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF. Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci. 2001;14:1603–12.

    PubMed  Google Scholar 

  • Nedergaard M, Verkhratsky A. Artifact versus reality-how astrocytes contribute to synaptic events. Glia. 2012;60:1013–23.

    PubMed Central  PubMed  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, et al. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci. 2001;114:1297–07.

    CAS  PubMed  Google Scholar 

  • Nowak B, Zadrożna M, Ossowska G, Sowa-Kućma M, Gruca P, Papp M, et al. Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment. Pharmacol Rep. 2010;62:1204–10.

    PubMed  Google Scholar 

  • Nudmamud-Thanoi S, Reynolds GP. The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett. 2004;372:173–7.

    CAS  PubMed  Google Scholar 

  • Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA. 1998;95:13290–5.

    PubMed Central  PubMed  Google Scholar 

  • Ordway GA, Szebeni A, Chandley MJ, Stockmeier CA, Xiang L, Newton SS, et al. Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. Int J Neuropsychopharmacol. 2012;15:855–68.

    CAS  PubMed  Google Scholar 

  • Paradise MB, Naismith SL, Norrie LM, Graeber MB, Hickie IB. The role of glia in late-life depression. Int Psychogeriatr. 2012;24:1878–90.

    PubMed  Google Scholar 

  • Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science. 1987;237:896–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psych Research. 2003;122:185–92.

    CAS  Google Scholar 

  • Pilc A, Wierońska JM, Skolnick P. Glutamate-Based Antidepressants: Preclinical Psychopharmacology. Biol Psychiatry. 2013 Feb 28. doi:pii: S0006-3223(13)00092-9. 10.1016/j.biopsych.2013.01.021. (Epub ahead of print).

    Google Scholar 

  • Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Hughes J, Stockmeier C, Miguel-Hidalgo JJ, Maciag D. Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry. 2013;73:613–21.

    PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6:219–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085–98.

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan KR. Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry. 2005;58:297–306.

    PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32:471–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets. 2013 Oct;14(11):1225–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raudensky J, Yamamoto BK. Effects of chronic unpredictable stress and methamphetamine on hippocampal glutamate function. Brain Res. 2007;1135:129–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry. 2013;73:1172–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL. Subtype-specific alterations of gammaaminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004;61:705–13.

    CAS  PubMed  Google Scholar 

  • Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008;7:426–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schipke CG, Heuser I, Peters O. Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res. 2011;45:242–8.

    PubMed  Google Scholar 

  • Sequeira A, Mamdani F, Ernst C. et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One. 2009;4:e6585.

    PubMed Central  PubMed  Google Scholar 

  • Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology. 2004;29:2088–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stockmeier C, Cobb JA, O’Neill K, Milner JN, Simpson J, Lawrence TJ, et al. Astrocytic Alterations in Postmortem Hippocampus in Major Depressive Disorder (MDD). Biol Psychiatry. 2010;67:56S.

    Google Scholar 

  • Sullivan SM, Lee A, Björkman ST, Miller SM, Sullivan RK, Poronnik P, et al. Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem. 2007;282:29414–23.

    CAS  PubMed  Google Scholar 

  • Toro CT, Hallak JE, Dunham JS, Deakin JF. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett. 2006;404:276–81.

    CAS  PubMed  Google Scholar 

  • Torres-Platas D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002;12:386–94.

    Google Scholar 

  • Torres-Platas SG, Hercher C. Davoli MA, Maussion G, Labonté B, Turecki G, et al. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 2011;36:2650–8.

    PubMed Central  PubMed  Google Scholar 

  • Venzala E, García-García AL, Elizalde N, Tordera RM. Social vs. Environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol. 2012;23:697–708.

    PubMed  Google Scholar 

  • Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, et al. Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging. 2013;34:1662–73.

    CAS  PubMed  Google Scholar 

  • Webster MJ, O’Grady J, Kleinman JE, Weickert CS. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience. 2005;133:453–61.

    CAS  PubMed  Google Scholar 

  • Wierońska JM, Brański P, Szewczyk B, Pałucha A, Papp M, Gruca P, et al. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in the rat hippocampus in an animal model of depression. Pol J Pharmacol. 2001;53:659–62.

    PubMed  Google Scholar 

  • Will CC, Aird F, Redei EE. Selectively bred Wistar-Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry. 2003;8:925–32.

    CAS  PubMed  Google Scholar 

  • Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci. 2013;118:3–8.

    PubMed Central  PubMed  Google Scholar 

  • Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73(5):962–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zadrozna M, Nowak B, Lason-Tyburkiewicz M, Wolak M, Sowa-Kucma M, Papp M, et al. Different pattern of changes in calcium binding proteins immunoreactivity in the medial prefrontal cortex of rats exposed to stress models of depression. Pharmacol Rep. 2011;63:1539–46.

    CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    CAS  PubMed  Google Scholar 

  • Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci. 2007;34:34–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazyna Rajkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rajkowska, G. (2014). Pathology in Astroglia, Glutamate, and GABA in Major Depressive Disorder: Evidence from Studies of Human Postmortem Tissue. In: Popoli, M., Diamond, D., Sanacora, G. (eds) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1056-4_14

Download citation

Publish with us

Policies and ethics