Skip to main content

Estrogen in the Fetus

  • Conference paper
  • First Online:
Book cover Advances in Fetal and Neonatal Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 814))

Abstract

Estradiol and other estrogens are important modulators of fetal and maternal physiology in pregnancy. Much is known about the biosynthesis of estrogens in fetus and mother, and much is known about the role that estrogen plays in labor and delivery. However, much less is known about the regulation of estrogen biosynthesis throughout the latter half of gestation, and the role that estrogen plays in homeostatic and neuroendocrine control in the fetus. This review focuses on the biosynthesis and actions of estrogen in the fetal circulation, the role that it plays in the development of the fetus in the latter half of gestation, and the role that is played by the estrogen milieu in the control of the timing of birth. Estrogen circulates in fetal blood in both unconjugated and conjugated molecular forms, with the conjugated steroids far more abundant than the unconjugated steroids. This review therefore also addresses the biological significance of the variety of molecular forms of estrogen circulating in fetal and maternal blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magness RR, Rosenfeld CR. Local and systemic estradiol-17 beta: effects on uterine and systemic vasodilation. Am J Physiol. 1989;256:E536–42.

    CAS  PubMed  Google Scholar 

  2. Longo LD. Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrinologic control. Am J Physiol. 1983;245:R720–9.

    CAS  PubMed  Google Scholar 

  3. Ueda S, Fortune V, Bull BS, Valenzuela GJ, Longo LD. Estrogen effects on plasma volume, arterial blood pressure, interstitial space, plasma proteins, and blood viscosity in sheep. Am J Obstet Gynecol. 1986;155:195–201.

    CAS  PubMed  Google Scholar 

  4. Greiss Jr FC, Anderson SG. Effect of ovarian hormones on the uterine vascular bed. Am J Obstet Gynecol. 1970;107:829–36.

    CAS  PubMed  Google Scholar 

  5. Price D, Harvey H. The relation of estrogen dosage to the precocious development of uterine glands in the rat. Anat Rec. 1947;99:658.

    CAS  PubMed  Google Scholar 

  6. Russo J, Russo IH. Breast development, hormones and cancer. Adv Exp Med Biol. 2008;630:52–6.

    CAS  PubMed  Google Scholar 

  7. Buhimschi CS. Endocrinology of lactation. Obstet Gynecol Clin North Am. 2004;31:963–79. xii.

    PubMed  Google Scholar 

  8. Diczfalusy E. Endocrine functions of the human fetoplacental unit. Fed Proc. 1964;23:791–8.

    CAS  PubMed  Google Scholar 

  9. Anderson ABM, Flint AP, Turnbull AC. Mechanism of activation of glucocorticoids in induction of ovine parturition: effect on placental steroid metabolism. J Endocrinol. 1975;66:61–70.

    CAS  PubMed  Google Scholar 

  10. Miller WL. Steroidogenic enzymes. Endocr Dev. 2008;13:1–18.

    CAS  PubMed  Google Scholar 

  11. Parker Jr CR. Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids. 1999;64:640–7.

    CAS  PubMed  Google Scholar 

  12. Su YX, Carey LC, Rose JC. Ontogeny of StAR and ACTH-R genes in ovine placenta. Placenta. 2004;25:658–63.

    CAS  PubMed  Google Scholar 

  13. de la Llosa-Hermier MP, Martal J, Ricour A, Hermier C. Evidence for modulation of progesterone secretion by calcium and protein kinase C activators in ovine chorionic cells. Placenta. 1991;12:511–20.

    PubMed  Google Scholar 

  14. de la Llosa-Hermier MP, Zongazo MA, Martal J, Hermier C. Lack of short-term modulation of in vitro placental progesterone secretion in sheep. Placenta. 1988;9:623–31.

    PubMed  Google Scholar 

  15. Mitchell BF, Lye SJ, Lukash L, Challis JRG. Androstenedione metabolism in the late gestation sheep fetus. Endocrinology. 1986;118:63–8.

    CAS  PubMed  Google Scholar 

  16. Deayton JM, Young IR, Thorburn GD. Early hypophysectomy of sheep fetuses: effects on growth, placental steroidogenesis and prostaglandin production. J Reprod Fertil. 1993;97:513–20.

    CAS  PubMed  Google Scholar 

  17. France JT, Magness RR, Murry BA, Rosenfeld CR, Mason JI. The regulation of ovine placental steroid 17 alpha-hydroxylase and aromatase by glucocorticoid. Mol Endocrinol. 1988;2:193–9.

    CAS  PubMed  Google Scholar 

  18. Mason JI, France JT, Magness RR, Murry BA, Rosenfeld CR. Ovine placental steroid 17 alpha-hydroxylase/C-17,20-lyase, aromatase and sulphatase in dexamethasone-induced and natural parturition. J Endocrinol. 1989;122:351–9.

    CAS  PubMed  Google Scholar 

  19. Wood CE. Estrogen/hypothalamus-pituitary-adrenal axis interactions in the fetus: the interplay between placenta and fetal brain. J Soc Gynecol Investig. 2005;12:67–76.

    CAS  PubMed  Google Scholar 

  20. Nathanielsz PW, Elsner C, Magyar D, Fridshal D, Freeman A, Buster JE. Time trend analysis of plasma unconjugated and sulfoconjugated estrone and 3 beta-delta 5-steroids in fetal and maternal sheep plasma in relation to spontaneous parturition at term. Endocrinology. 1982;110:1402–7.

    CAS  PubMed  Google Scholar 

  21. Schaub CE, Gersting JA, Keller-Wood M, Wood CE. Development of ER-alpha and ER-beta expression in the developing ovine brain and pituitary. Gene Expr Patterns. 2008;8:457–63.

    CAS  PubMed  Google Scholar 

  22. Wood CE, Saoud CJ. Influence of estradiol and androstenedione on ACTH and cortisol secretion in the ovine fetus. J Soc Gynecol Investig. 1997;4:279–83.

    CAS  PubMed  Google Scholar 

  23. Purinton SC, Wood CE. Oestrogen augments the fetal ovine hypothalamus- pituitary-adrenal axis in response to hypotension. J Physiol. 2002;544:919–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wood CE, Giroux D. Central nervous system prostaglandin endoperoxide synthase-1 and -2 responses to oestradiol and cerebral hypoperfusion in late-gestation fetal sheep. J Physiol. 2003;549:573–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Saoud CJ, Wood CE. Modulation of ovine fetal adrenocorticotropin secretion by androstenedione and 17beta-estradiol. Am J Physiol. 1997;272:R1128–34.

    CAS  PubMed  Google Scholar 

  26. Holloway AC, Whittle WL, Challis JR. Effects of cortisol and estradiol on pituitary expression of proopiomelanocortin, prohormone convertase-1, prohormone convertase-2, and glucocorticoid receptor mRNA in fetal sheep. Endocrine. 2001;14:343–8.

    CAS  PubMed  Google Scholar 

  27. Pepe GJ, Ballard PL, Albrecht ED. Fetal lung maturation in estrogen-deprived baboons. J Clin Endocrinol Metab. 2003;88:471–7.

    CAS  PubMed  Google Scholar 

  28. Wood CE, Saoud CJ, Stoner TA, Keller-Wood M. Estrogen and androgen influence hypothalamic AVP and CRF concentrations in fetal and adult sheep. Regul Pept. 2001;98:63–8.

    CAS  PubMed  Google Scholar 

  29. Hollingworth SA, Deayton JM, Young IR, Thorburn GD. Prostaglandin E2 administered to fetal sheep increases the plasma concentration of adrenocorticotropin (ACTH) and the proportion of ACTH in low molecular weight forms. Endocrinology. 1995;136:1233–40.

    CAS  PubMed  Google Scholar 

  30. Challis JR, Hart I, Louis TM, Mitchell MD, Jenkin G, Robinson JS, et al. Prostaglandins in the sheep fetus: implications for fetal function. Adv Prostaglandin Thromboxane Res. 1978;4:115–32.

    CAS  PubMed  Google Scholar 

  31. Young IR, Deayton JM, Hollingworth SA, Thorburn GD. Continuous intrafetal infusion of prostaglandin E2 prematurely activates the hypothalamo-pituitary-adrenal axis and induces parturition in sheep. Endocrinology. 1996;137:2424–31.

    CAS  PubMed  Google Scholar 

  32. Thorburn GD, Hollingworth SA, Hooper SB. The trigger for parturition in sheep: fetal hypothalamus or placenta? J Dev Physiol. 1991;15:71–9.

    CAS  PubMed  Google Scholar 

  33. Ratter S, Rees LH, Landon JR, Hillier K, Jansen CAM, Beck NFG, et al. The effect of prostaglandin E2 infusion in the fetal lamb on fetal plasma ACTH, prolactin and cortisol concentrations. Prostaglandins. 1979;18:101–16.

    CAS  PubMed  Google Scholar 

  34. Unno N, Wu WX, Wong CH, Bennett PR, Shinozuka N, Nathanielsz PW. Prostaglandin regulation of fetal plasma adrenocorticotropin and cortisol concentrations in late-gestation sheep. Biol Reprod. 1998;58:514–9.

    CAS  PubMed  Google Scholar 

  35. McKeown KJ, Challis JR, Small C, Adamson L, Bocking AD, Fraser M, et al. Altered fetal pituitary-adrenal function in the ovine fetus treated with RU486 and meloxicam, an inhibitor of prostaglandin synthase-II. Biol Reprod. 2000;63:1899–904.

    CAS  PubMed  Google Scholar 

  36. Cudd TA, Wood CE. Prostaglandin E2 releases ovine fetal ACTH from a site not perfused by the carotid vasculature. Am J Physiol. 1992;263:R136–40.

    CAS  PubMed  Google Scholar 

  37. Gersting J, Schaub CE, Keller-Wood M, Wood CE. Inhibition of brain prostaglandin endoperoxide synthase-2 prevents the preparturient increase in fetal adrenocorticotropin secretion in the sheep fetus. Endocrinology. 2008;149:4128–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wood CE, Powers MJ, Keller-Wood M. Blockade of PGHS-2 inhibits the hypothalamus-pituitary-adrenal axis response to cerebral hypoperfusion in the sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1813–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Powers MJ, Wood CE. Ketamine inhibits fetal ACTH responses to cerebral hypoperfusion. Am J Physiol Regul Integr Comp Physiol. 2007;292:1542–9.

    Google Scholar 

  40. Knutson N, Wood CE. Interaction of PGHS-2 and glutamatergic mechanisms controlling the ovine fetal hypothalamus-pituitary-adrenal axis. Am J Physiol Regul Integr Comp Physiol. 2010;299:R365–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Gersting JA, Schaub CE, Wood CE. Development of prostaglandin endoperoxide synthase expression in the ovine fetal central nervous system and pituitary. Gene Expr Patterns. 2009;9:603–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Deauseault D, Giroux D, Wood CE. Ontogeny of immunoreactive prostaglandin endoperoxide synthase isoforms in ovine fetal pituitary, hypothalamus, and brainstem. Neuroendocrinology. 2000;71:287–91.

    CAS  PubMed  Google Scholar 

  43. Reimsnider SK, Wood CE. Colocalisation of prostaglandin endoperoxide synthase and immunoreactive adrenocorticotropic hormone in ovine foetal pituitary. J Endocrinol. 2004;180:303–10.

    CAS  PubMed  Google Scholar 

  44. Fraites MJ, Wood CE. Chemoreflex activity increases prostaglandin endoperoxide synthase mRNA expression in the late-gestation fetal sheep brain. Reprod Sci. 2011;18:824–31.

    PubMed Central  PubMed  Google Scholar 

  45. Schaub CE, Keller-Wood M, Wood CE. Blockade of estrogen receptors decreases CNS and pituitary prostaglandin synthase expression in fetal sheep. Neuroendocrinology. 2008;87:121–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Pedram A, Razandi M, Aitkenhead M, Hughes CC, Levin ER. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem. 2002;277:50768–75.

    CAS  PubMed  Google Scholar 

  47. Han EH, Kim HG, Hwang YP, Choi JH, Im JH, Park B, et al. The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o, p′-DDT in human breast cancer cells. Toxicol Lett. 2010;198:331–41.

    CAS  PubMed  Google Scholar 

  48. Zhu XO, Yang Z, Guo CM, Ni XT, Li JN, Ge YC, et al. Paradoxical stimulation of cyclooxygenase-2 expression by glucocorticoids via a cyclic AMP response element in human amnion fibroblasts. Mol Endocrinol. 2009;23:1839–49.

    CAS  PubMed  Google Scholar 

  49. Whittle WL, Holloway AC, Lye SJ, Gibb W, Challis JR. Prostaglandin production at the onset of ovine parturition is regulated by both estrogen-independent and estrogen-dependent pathways. Endocrinology. 2000;141:3783–91.

    CAS  PubMed  Google Scholar 

  50. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol. 2006;38:1654–61.

    CAS  PubMed  Google Scholar 

  51. Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab. 1997;82:3509–12.

    CAS  PubMed  Google Scholar 

  52. Malayer JR, Woods VM. Development of oestrogen receptor expression and hormone response in the uterus of the bovine fetus. J Reprod Fertil. 1998;112:289–300.

    CAS  PubMed  Google Scholar 

  53. Lonard DM, O’Malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol. 2012;8:598–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19:833–42.

    PubMed  Google Scholar 

  55. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16:231–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Marino M, Ascenzi P. Membrane association of estrogen receptor alpha and beta influences 17beta-estradiol-mediated cancer cell proliferation. Steroids. 2008;73:853–8.

    CAS  PubMed  Google Scholar 

  57. Marino M, Ascenzi P. Steroid hormone rapid signaling: the pivotal role of S-palmitoylation. IUBMB Life. 2006;58:716–9.

    CAS  PubMed  Google Scholar 

  58. Christensen A, Micevych P. CAV1 siRNA reduces membrane estrogen receptor-alpha levels and attenuates sexual receptivity. Endocrinology. 2012;153:3872–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. McEwen BS. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol. 2001;91:2785–801.

    CAS  PubMed  Google Scholar 

  60. Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, et al. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology. 2008;149:1627–37.

    CAS  PubMed  Google Scholar 

  61. Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria-physiological and pathological implications. Mol Cell Endocrinol. 2008;290:51–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab. 2009;20:477–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Klinge CM. Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem. 2008;105:1342–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lehman MN, Ebling FJP, Moenter SM, Karsch FJ. Distribution of estrogen receptor-immunoreactive cells in the sheep brain. Endocrinology. 1993;133:876–86.

    CAS  PubMed  Google Scholar 

  65. Scott CJ, Rawson JA, Pereira AM, Clarke IJ. The distribution of estrogen receptors in the brainstem of female sheep. Neurosci Lett. 1998;241:29–32.

    CAS  PubMed  Google Scholar 

  66. Scott CJ, Tilbrook AJ, Simmons DM, Rawson JA, Chu S, Fuller PJ, et al. The distribution of cells containing estrogen receptor-alpha (ERalpha) and ERbeta messenger ribonucleic acid in the preoptic area and hypothalamus of the sheep: comparison of males and females. Endocrinology. 2000;141:2951–62.

    CAS  PubMed  Google Scholar 

  67. Friedman WJ, McEwen BS, Toran-Allerand CD, Gerlach JL. Perinatal development of hypothalamic and cortical estrogen receptors in mouse brain: methodological aspects. Brain Res. 1983;313:19–27.

    CAS  PubMed  Google Scholar 

  68. Gerlach JL, McEwen BS, Toran-Allerand CD, Friedman WJ. Perinatal development of estrogen receptors in mouse brain assessed by radioautography, nuclear isolation and receptor assay. Brain Res. 1983;313:7–18.

    CAS  PubMed  Google Scholar 

  69. Peruffo A, Giacomello M, Montelli S, Corain L, Cozzi B. Expression and localization of aromatase P450AROM, estrogen receptor-alpha, and estrogen receptor-beta in the developing fetal bovine frontal cortex. Gen Comp Endocrinol. 2011;172:211–7.

    CAS  PubMed  Google Scholar 

  70. Resko JA, Stadelman HL. 17 beta-hydroxysteroid dehydrogenase activity in tissues of fetal rhesus macaques. Proc Soc Exp Biol Med. 1982;171:233–7.

    CAS  PubMed  Google Scholar 

  71. Milewich L, MacDonald PC, Carr BR. Activity of 17 beta-hydroxysteroid oxidoreductase in tissues of the human fetus. J Endocrinol. 1989;123:509–18.

    CAS  PubMed  Google Scholar 

  72. Takeyama J, Suzuki T, Hirasawa G, Muramatsu Y, Nagura H, Iinuma K, et al. 17beta-hydroxysteroid dehydrogenase type 1 and 2 expression in the human fetus. J Clin Endocrinol Metab. 2000;85:410–6.

    CAS  PubMed  Google Scholar 

  73. Adamski J, Jakob FJ. A guide to 17beta-hydro-xysteroid dehydrogenases. Mol Cell Endocrinol. 2001;171:1–4.

    Google Scholar 

  74. Selmanoff MK, Brodkin LD, Weiner RI, Siiteri PK. Aromatization and 5alpha-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology. 1977;101:841–8.

    CAS  PubMed  Google Scholar 

  75. McEwen BS, Lieberburg I, Chaptal C, Krey LC. Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav. 1977;9:249–63.

    CAS  PubMed  Google Scholar 

  76. Weisz J. In vitro assays of aromatase and their role in studies of estrogen formation in target tissues. Cancer Res. 1982;42 Suppl 8:3295s–8.

    CAS  PubMed  Google Scholar 

  77. George FW, Ojeda SR. Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology. 1982;111:522–9.

    CAS  PubMed  Google Scholar 

  78. MacLusky NJ, Roy EJ, Shanabrough M, Eisenfeld AJ. Preservation of steroid receptors in frozen brain and pituitary tissue: use of the cryoprotective agent, dimethylsulfoxide. J Neurosci Methods. 1986;16:131–40.

    CAS  PubMed  Google Scholar 

  79. Roselli CE, Resko JA. Effects of gonadectomy and androgen treatment on aromatase activity in the fetal monkey brain. Biol Reprod. 1986;35:106–12.

    CAS  PubMed  Google Scholar 

  80. Roselli CE, Resko JA, Stormshak F. Estrogen synthesis in fetal sheep brain: effect of maternal treatment with an aromatase inhibitor. Biol Reprod. 2003;68:370–4.

    CAS  PubMed  Google Scholar 

  81. Mura A, Gadau S, Lepore G, Balzano F, Zedda M, Mura E, et al. Expression and distribution of P450-aromatase in the ovine hypothalamus at different stages of fetal development. Neuro Endocrinol Lett. 2010;31:690–9.

    CAS  PubMed  Google Scholar 

  82. Pezzi V, Mathis JM, Rainey WE, Carr BR. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J Steroid Biochem Mol Biol. 2003;87:181–9.

    CAS  PubMed  Google Scholar 

  83. Toda K, Simpson ER, Mendelson CR, Shizuta Y, Kilgore MW. Expression of the gene encoding aromatase cytochrome P450 (CYP19) in fetal tissues. Mol Endocrinol. 1994;8:210–7.

    CAS  PubMed  Google Scholar 

  84. Yu L, Romero DG, Gomez-Sanchez CE, Gomez-Sanchez EP. Steroidogenic enzyme gene expression in the human brain. Mol Cell Endocrinol. 2002;190:9–17.

    CAS  PubMed  Google Scholar 

  85. Gomez-Sanchez EP, Ahmad N, Romero DG, Gomez-Sanchez CE. Is aldosterone synthesized within the rat brain? Am J Physiol Endocrinol Metab. 2005;288:E342–6.

    CAS  PubMed  Google Scholar 

  86. Carnegie JA, Robertson HA. Conjugated and unconjugated estrogens in fetal and maternal fluids of the pregnant ewe: a possible role for estrone sulfate during early pregnancy. Biol Reprod. 1978;19:202–11.

    CAS  PubMed  Google Scholar 

  87. Tsang CPW. Changes in plasma levels of estrone sulfate and estrone in the pregnant ewe around parturition. Steroids. 1974;23:855–68.

    CAS  PubMed  Google Scholar 

  88. James MO, Li W, Summerlot DP, Rowland-Faux L, Wood CE. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int. 2010;36:942–9.

    CAS  PubMed  Google Scholar 

  89. Pierrepoint CG, Anderson AB, Harvey G, Turnbull AC, Griffiths K. The conversion in vitro of C19-steroids to oestrogen sulphates by the sheep placenta. J Endocrinol. 1971;50:537–8.

    CAS  PubMed  Google Scholar 

  90. Cousins R, Wood CE. Expression of organic anion transporters 1 and 3 in the ovine fetal brain during the latter half of gestation. Neurosci Lett. 2010;484:22–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Purinton SC, Newman H, Castro MI, Wood CE. Ontogeny of estrogen sulfatase activity in ovine fetal hypothalamus, hippocampus, and brain stem. Am J Physiol. 1999;276:R1647–52.

    CAS  PubMed  Google Scholar 

  92. Winikor J, Schlaerth C, Rabaglino MB, Cousins R, Sutherland M, Wood CE. Complex actions of estradiol-3-sulfate in late gestation fetal brain. Reprod Sci. 2011;18:654–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Payne AH, Lawrence CC, Foster DL, Jaffe RB. Intranuclear binding of 17-estradiol and estrone in female ovine pituitaries following incubation with estrone sulfate. J Biol Chem. 1973;248:1598–602.

    CAS  PubMed  Google Scholar 

  94. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138:863–70.

    CAS  PubMed  Google Scholar 

  95. Pasqualini JR, Gelly C, Nguyen BL, Vella C. Importance of estrogen sulfates in breast cancer. J Steroid Biochem. 1989;34:155–63.

    CAS  PubMed  Google Scholar 

  96. Wood CE, Gridley KE, Keller-Wood M. Biological activity of 17beta-estradiol-3-sulfate in ovine fetal plasma and uptake in fetal brain. Endocrinology. 2003;144:599–604.

    CAS  PubMed  Google Scholar 

  97. Purinton SC, Wood CE. Ovine fetal estrogen sulfotransferase in brain regions important for hypothalamus-pituitary-adrenal axis control. Neuroendocrinology. 2000;71:237–42.

    CAS  PubMed  Google Scholar 

  98. Gong H, Jarzynka MJ, Cole TJ, Lee JH, Wada T, Zhang B, et al. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res. 2008;68:7386–93.

    CAS  PubMed  Google Scholar 

  99. Rabaglino MB, Richards E, Denslow N, Keller-Wood M, Wood CE. Genomics of estradiol-3-sulfate action in the ovine fetal hypothalamus. Physiol Genomics. 2012;44:669–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Baulieu EE, Robel P. Neurosteroids: a new brain function? J Steroid Biochem Mol Biol. 1990;37:395–403.

    CAS  PubMed  Google Scholar 

  101. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol. 2001;46:1–32.

    CAS  PubMed  Google Scholar 

  102. Schumacher M, Liere P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, et al. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int. 2008;52:522–40.

    CAS  PubMed  Google Scholar 

  103. Petrovic M, Sedlacek M, Cais O, Horak M, Chodounska H, Vyklicky Jr L. Pregnenolone sulfate modulation of N-methyl-D-aspartate receptors is phosphorylation dependent. Neuroscience. 2009;160:616–28.

    CAS  PubMed  Google Scholar 

  104. Kakusaka S, Asayama M, Kaihara A, Sasano T, Suzuki T, Kurokawa J, et al. A receptor-independent effect of estrone sulfate on the HERG channel. J Pharmacol Sci. 2009;109:152–6.

    CAS  PubMed  Google Scholar 

  105. Zurkovsky L, Serio SJ, Korol DL. Intra-striatal estradiol in female rats impairs response learning within two hours of treatment. Horm Behav. 2011;60:470–7.

    CAS  PubMed  Google Scholar 

  106. Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170:1045–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Charalampopoulos I, Alexaki VI, Tsatsanis C, Minas V, Dermitzaki E, Lasaridis I, et al. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann N Y Acad Sci. 2006;1088:139–52.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Wood, C.E. (2014). Estrogen in the Fetus. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_19

Download citation

Publish with us

Policies and ethics