Advertisement

Optimizing the Allocation of Cuboidal Boxes to Cuboidal Compartments for Storage in a Warehouse

  • G. S. R. MurthyEmail author
  • A. L. N. Murthy
  • Katta G. Murty
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 212)

Abstract

In this chapter we consider the problem of managing the storage space optimally at a warehouse for storing cuboidal boxes in cuboidal compartments. Footwear manufacturers face this problem for storing shoe boxes; drug companies manufacturing medicines packed in cartons cuboidal in shape face the same problem, etc. Typically, warehouse management problems involve continual storage and retrieval (issues) of goods from the warehouse. Therefore, a scheme is required to handle the dynamic storage and retrieval of goods optimally from the warehouse. In this chapter we will discuss an efficient procedure for developing a decision support system for the dynamic warehouse management problem. The source for this chapter is based on the work done by Das and a subsequent paper by Murthy A. L. N.

Keywords

Dynamic Version Storage Pattern Primal Simplex Algorithm Empty Compartment Footwear Manufacturer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

273578_1_En_12_MOESM1_ESM.pdf (56 kb)
(pdf 57 KB)

References

  1. 1.
    Bengtsson, B. E. (1982). Packing rectangular pieces—a heuristic approach. The Computer Journal, 25, 353–357.CrossRefGoogle Scholar
  2. 2.
    Chung, F. K.R., Garey, M. R., & Johnson, D. S. (1982). On packing two-dimensional bins. SIAM Journal of Algebraic and Discrete Methods, 3, 66–76.CrossRefGoogle Scholar
  3. 3.
    Coffman, E. G. Jr., Garey, M. R., & Johnson, D. S. (1996). Approximation algorithms for bin packing: A survey. In D. S. Hochhaum (Ed.), Approximation algorithms for NP-Hard problems. (pp. 46–93). Boston: PWS Publishing Company.Google Scholar
  4. 4.
    Coffman, E. G. Jr., Galambos, G., Martello, S., & Vigo, D. (1998). Bin packing approximation algorithms: combinatorial analysis. In D. Z. Du & P. M. Paradalos (Eds.), Handbook of Combinatorial Optimization, Kluwer Academic Publishers.Google Scholar
  5. 5.
    Das, P. (2005). A heuristic approach for arrangement of footwear boxes to maximize space utilization and related business issues. International Journal of Management Science, 11(2), 61–84.Google Scholar
  6. 6.
    Dyckhoff, H. (1990). A typology of cutting and packing problem. European Journal of Operational Research, 44, 145–159.CrossRefGoogle Scholar
  7. 7.
    Dyckhoff, H., & Finke, U. (1992). Cutting and packing in production and distribution: A typology and bibliography. Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
  8. 8.
    El-Bouri, A., Popplewell, N., Balakrishnan, S. & Alfa, A. (1994). A search based heuristic for the two-dimensional bin-packing problem. INFOR, 32, 265–274.Google Scholar
  9. 9.
    Haessler, R. W., & Sweeney, P. E. (1991). Cutting stock problems and solution procedures. European Journal of Operational Research, 54, 141–150.CrossRefGoogle Scholar
  10. 10.
    Hinxman, A. I. (1980). The trim-loss and assortment problems: A survey. European Journal of Operational Research, 5, 8–18.CrossRefGoogle Scholar
  11. 11.
    Murthy, A. L. N. (2012). Space optimization for warehousing problem: A Methodology for Decision Support System. Management Science and Financial Engineering, 18(1), 39–48.CrossRefGoogle Scholar
  12. 12.
    Murty, K. G. (1992). Network programming. Angelwood Cliffs: Prentice-Hall.Google Scholar
  13. 13.
    Sweeney, P. E., &Paternoster, E. R. (1992). Cutting and packing problems: A categorized, application-orientated research bibliography. Journal of the Operational Research Society, 43(7), 691–706.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. S. R. Murthy
    • 1
    Email author
  • A. L. N. Murthy
    • 2
  • Katta G. Murty
    • 3
  1. 1.SQC & OR UnitIndian Statistical InstituteHyderabadIndia
  2. 2.SQC & OR UnitIndian Statistical InstituteHyderabadIndia
  3. 3.Department of Industrial and Operations EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations