Skip to main content

Stem Cell Therapies in Neurology

  • Chapter
  • First Online:
Book cover Adult Stem Cell Therapies: Alternatives to Plasticity

Abstract

Cells of the central nervous system were once thought to be incapable of regeneration. This brain repair limitation makes neurological disorders particularly devastating as the associated degeneration was thought to be irreversible. However, recent advances in the understanding of stem cells and endogenous repair systems of the central nervous system have led to the development of potential neuroregenerative therapies. Pluripotent embryonic stem cells have shown promise in alleviating deficits associated with Parkinson’s disease and cerebral ischemia. However, their substantial capacity for proliferation also puts them at a high risk of becoming tumorigenic. Multipotent adult stem cells, such as mesenchymal stem cells derived from adult bone marrow, are more limited in their differentiating capacity, but do not possess the same risk of teratoma formation as embryonic and fetal stem cells. While embryonic and adult stem cell therapies commonly focus on cell replacement, recent studies are also evaluating the efficacy of using stem cells to stimulate endogenous neuroprotective mechanisms via secretion of therapeutic molecules. While substantial progress in the use of stem cells has been made, potential cell-based therapies remain hindered by numerous optimization challenges associated with translation of the cell transplant regimen from the laboratory to the clinic. In order to optimize stem cell therapy, translational factors such as cell dosage, route of administration, type of transplant (autologous or allogenic), and the use of immunosuppression require critical assessment of safety and efficacy for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

GDNF:

Glial cell line-derived neurotrophic factor

HSC:

Hematopoietic stem cell

MSC:

Mesenchymal stem cell

NPC:

Neural progenitor cell

NSC:

Neural stem cell

SNc:

Substantia nigra pars compacta

VSELs:

Very small embryonic-like stem cells

References

  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    PubMed  CAS  Google Scholar 

  2. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758

    PubMed  Google Scholar 

  3. Amariglio N, Hirshberg A, Scheithauer BW et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029

    PubMed  PubMed Central  Google Scholar 

  4. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    PubMed  CAS  Google Scholar 

  5. Bachstetter AD, Pabon MM, Cole MJ et al (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9:22

    PubMed  PubMed Central  Google Scholar 

  6. Barkho BZ, Song H, Aimone JB et al (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Bath PM, Sprigg N (2007) Colony stimulating factors (including erythropoietin, granulocyte colony stimulating factor and analogues) for stroke. Cochrane Database Syst Rev 18(2):CD005207

    Google Scholar 

  8. Behrstock S, Ebert A, McHugh J et al (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388

    PubMed  CAS  Google Scholar 

  9. Ben-Hur T, Idelson M, Khaner H et al (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22:1246–1255

    PubMed  Google Scholar 

  10. Beyth S, Borovsky Z, Mevorach D et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsivenss. Blood 105:2214–2219

    PubMed  CAS  Google Scholar 

  11. Björklund LM, Sánchez-Pernaute R, Chung S et al (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349

    PubMed  PubMed Central  Google Scholar 

  12. Borlongan CV, Tajima Y, Trojanowski JQ et al (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2 N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    PubMed  CAS  Google Scholar 

  13. Borlongan CV, Hadman M, Sanberg CD et al (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    PubMed  Google Scholar 

  14. Borlongan CV, Kaneko Y, Maki M et al (2010) Menstrual blood cells display stem cell- like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–452

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Bossolasco P, Cova L, Calzarossa C et al (2005) Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 193:312–325

    PubMed  CAS  Google Scholar 

  16. Brines ML, Ghezzi P, Keenan S et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    PubMed  CAS  Google Scholar 

  18. Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923

    PubMed  CAS  Google Scholar 

  19. Brundin P, Pogarell O, Hagell P et al (2000) Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 123:1380–1390

    PubMed  Google Scholar 

  20. Brunet JF, Redmond DE Jr, Bloch J (2009) Primate adult brain cell autotransplantation, ba pilot study in asymptomatic MPTP-treated monkeys. Cell Transplant 18:787–799

    PubMed  Google Scholar 

  21. Burt RK (1997) Immune ablation and hematopoietic stem cell rescue for severe autoimmune diseases (SADS). Cancer Treat Res 77:317–332

    PubMed  CAS  Google Scholar 

  22. Burt RK, Cohen B, Rose J et al (2005) Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol 62:860–864

    PubMed  Google Scholar 

  23. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    PubMed  CAS  Google Scholar 

  24. Chen J, Li Y, Wang L et al (2001a) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    CAS  Google Scholar 

  25. Chen J, Sanberg PR, Li Y et al (2001b) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    CAS  Google Scholar 

  26. Chen J, Li Y, Katakowski M et al (2003a) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    CAS  Google Scholar 

  27. Chen J, Zhang ZG, Li Y et al (2003b) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    CAS  Google Scholar 

  28. Chen J, Magavi SS, Macklis JD (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci U S A 101:16357–16362

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Cho KJ, Trzaska KA, Greco SJ et al (2005) Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 α. Stem Cells 23:383–391

    PubMed  CAS  Google Scholar 

  30. Choi-Lundberg DL, Lin Q, Chang YN et al (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    PubMed  CAS  Google Scholar 

  31. Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100

    PubMed  Google Scholar 

  32. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    PubMed  CAS  Google Scholar 

  33. Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    PubMed  CAS  Google Scholar 

  34. Doggrell SA (2004) A neuroprotective derivative of erythropoietin that is not erythropoietic. Expert Opin Investig Drugs 13:1517–1519

    PubMed  CAS  Google Scholar 

  35. Duggal N, Schmidt-Kastner R, Hakim AM (1997) Nestin expression in reactive astrocytes following focal cerebral ischemia in rats. Brain Res 768:1–9

    PubMed  CAS  Google Scholar 

  36. Ehrenreich H, Hasselblatt M, Dembowski C et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Ehrenreich H, Weissenborn K, Prange H et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40:e647–e656

    PubMed  CAS  Google Scholar 

  38. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    PubMed  CAS  Google Scholar 

  39. Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Google Scholar 

  40. Eve DJ, Marty PJ, McDermott RJ et al (2008) Stem cell research and health education. Am J Health Educ 39:167–179

    PubMed  PubMed Central  Google Scholar 

  41. Freed CR, Greene PE, Breeze RE et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719

    PubMed  CAS  Google Scholar 

  42. Guo L, Yin F, Meng HQ et al (2005) Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro. Biomed Environ Sci 18:36–42

    PubMed  Google Scholar 

  43. Hauser RA, Freeman TB, Snow BJ et al (1999) Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol 56:179–187

    PubMed  CAS  Google Scholar 

  44. Hess DC, Borlongan CV (2008) Stem cells and neurological diseases. Cell Prolif 41:94–114

    PubMed  Google Scholar 

  45. Hill WD, Hess DC, Martin-Studdard A et al (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    PubMed  CAS  Google Scholar 

  46. Huang H, Chen L, Sanberg P (2010) Cell therapy from bench to bedside translation in CNS neurorestoratology era. Cell Med 1:15–46

    PubMed  PubMed Central  Google Scholar 

  47. Hunt DP, Irvine KA, Webber DJ et al (2008) Effects of direct transplantation of multipotent mesenchymal stromal/stem cells into the demyelinated spinal cord. Cell Transplant 17:865–873

    PubMed  CAS  Google Scholar 

  48. Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Jackson JS, Golding JP, Chapon C et al (2010) Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 1:17

    PubMed  PubMed Central  Google Scholar 

  50. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002a) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    CAS  Google Scholar 

  51. Jiang Y, Vaessen B, Lenvik T et al (2002b) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    CAS  Google Scholar 

  52. Jiang Y, Henderson D, Blackstad M et al (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U S A 100:11854–11860

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Jiang Y, Zhu J, Xu G et al (2011) Intranasal delivery of stem cells to the brain. Expert Opin Drug Deliv 8:623–632

    PubMed  CAS  Google Scholar 

  54. Joseph NM, Mosher JT, Buchstaller J et al (2008) The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13:129–140

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946

    PubMed  PubMed Central  Google Scholar 

  56. Kabos P, Ehtesham M, Black KL et al (2003) Neural stem cells as delivery vehicles. Expert Opin Biol Ther 3:759–770

    PubMed  CAS  Google Scholar 

  57. Karaoz E, Demircan PC, Saglam O et al (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136:455–473

    PubMed  Google Scholar 

  58. Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    PubMed  PubMed Central  Google Scholar 

  59. Kawada H, Takizawa S, Takanashi T et al (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113:701–710

    PubMed  CAS  Google Scholar 

  60. Kishk NA, Gabr H, Hamdy S et al (2010) Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair 24:702–708

    PubMed  Google Scholar 

  61. Klein SM, Behrstock S, McHugh J et al (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    PubMed  CAS  Google Scholar 

  62. Kondziolka D, Wechsler L, Goldstein S et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    PubMed  CAS  Google Scholar 

  63. Kondziolka D, Steinberg GK, Wechsler L et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    PubMed  Google Scholar 

  64. Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    PubMed  CAS  Google Scholar 

  65. Kramer BC, Woodbury D, Black IB (2006) Adult rat bone marrow stromal cells express genes associated with dopamine neurons. Biochem Biophys Res Commun 343:1045–1052

    PubMed  CAS  Google Scholar 

  66. Kucia M et al (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    PubMed  CAS  Google Scholar 

  67. Kulbatski I (2010) Stem/precursor cell-based CNS therapy: the importance of circumventing immune suppression by transplanting autologous cells. Stem Cell Rev 6:405–410

    PubMed  Google Scholar 

  68. Lang AE, Gill S, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466

    PubMed  CAS  Google Scholar 

  69. Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloidbeta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450:136–141

    PubMed  CAS  Google Scholar 

  70. Lee HJ, Lee JK, Lee H et al (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481:30–35

    PubMed  CAS  Google Scholar 

  71. Lee HJ, Lee JK, Lee H et al (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33:588–602

    PubMed  CAS  Google Scholar 

  72. Lensch MW (2009) Cellular reprogramming and pluripotency induction. Br Med Bull 90:19–35

    PubMed  CAS  Google Scholar 

  73. Leung AY, Kwong YL (2010) Haematopoietic stem cell transplantation: current concepts and novel therapeutic strategies. Br Med Bull 93:85–103

    PubMed  CAS  Google Scholar 

  74. Le´vesque MF, Neuman T, Rezak M (2009) Therapeutic microinjection of autologous adult human neural stem cells and differentiated neurons for Parkinson’s disease: five-year post-operative outcome. Open Stem Cell J 1:20–29

    Google Scholar 

  75. Li Y, Chopp M (1999) Temporal profile of nestin expression after focal cerebral ischemia in adult rat. Brain Res 838:1–10

    PubMed  CAS  Google Scholar 

  76. Li Y, Chen J, Wang L et al (2001a) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56:1666–1672

    CAS  Google Scholar 

  77. Li Y, Chen J, Wang L et al (2001b) Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 316:67–70

    CAS  Google Scholar 

  78. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    PubMed  CAS  Google Scholar 

  79. Lindvall O, Widner H, Rehncrona S et al (1992) Transplantation of fetal dopamine neurons in Parkinson’s disease: one‐year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 31:155–165

    PubMed  CAS  Google Scholar 

  80. Liu H, Honmou O, Harada K et al (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129:2734–2745

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Liu SP, Fu RH, Huang YC et al (2011) Induced pluripotent stem (iPS) cell research overview. Cell Transplant 20:15–19

    PubMed  Google Scholar 

  82. Ludwin SK (2006) The pathogenesis of multiple sclerosis: relating human pathology to experimental studies. J Neuropathol Exp Neurol 65:305–318

    PubMed  Google Scholar 

  83. Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955

    PubMed  CAS  Google Scholar 

  84. Mäkinen S, Kekarainen T, Nystedt J et al (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215

    PubMed  Google Scholar 

  85. Matsuda R, Yoshikawa M, Kimura H et al (2009) Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transplant 18:39–54

    PubMed  Google Scholar 

  86. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Newcomb JD, Ajmo J, Craig T et al (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15:213–223

    PubMed  Google Scholar 

  88. Nikolic WV, Hou H, Town T et al (2008) Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 17:423–439

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Nomura T, Honmou O, Harada K et al (2005) IV infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136:161–169

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Olanow CW, Goetz CG, Kordower JH et al (2003) A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    PubMed  Google Scholar 

  91. Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    PubMed  CAS  Google Scholar 

  92. Park DH, Eve DJ, Musso J III et al (2009) Inflammation and stem cell migration to the injured brain in higher organisms. Stem Cells Dev 18:693–702

    PubMed  CAS  Google Scholar 

  93. Park DH, Eve DJ, Sanberg PR et al (2010) Increased neuronal proliferation in the dentate gyrus of aged rats following neural stem cell implantation. Stem Cells Dev 19:175–180

    PubMed  CAS  Google Scholar 

  94. Patel NK, Bunnage M, Plaha P et al (2005) Intraputamenal infusion of glial cell line- derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302

    PubMed  CAS  Google Scholar 

  95. Patel AN, Park E, Kuzman M et al (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311

    PubMed  Google Scholar 

  96. Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    PubMed  CAS  Google Scholar 

  97. Pluchino S, Zanotti L, Rossi B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    PubMed  CAS  Google Scholar 

  98. Ratajczak J, Zuba-Surma E, Paczkowska E et al (2011) Stem cells for neural regeneration—a potential application of very small embryonic-like stem cells. J Physiol Pharmacol 62:3–12

    PubMed  CAS  Google Scholar 

  99. Rodrigues MC, Voltarelli J, Sanberg PR et al (2012) Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 36:177–190

    PubMed  Google Scholar 

  100. Sanberg PR, Eve DJ, Willing AE et al (2011) The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells. Cell Transplant 20:85–94

    PubMed  Google Scholar 

  101. Santiago LY, Clavijo-Alvarez J, Brayfield C et al (2009) Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 18:145–158

    PubMed  Google Scholar 

  102. Schneider A, Kruger C, Steigleder T et al (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14:118–124

    PubMed  CAS  Google Scholar 

  104. Shen LH, Li Y, Chen J et al (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13

    PubMed  Google Scholar 

  105. Shyu WC, Lin SZ, Yang HI et al (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    PubMed  CAS  Google Scholar 

  106. Slevin JT, Gerhardt GA, Smith CD et al (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    PubMed  CAS  Google Scholar 

  107. Svendsen CN, Caldwell MA, Shen J et al (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146

    PubMed  CAS  Google Scholar 

  108. Svendsen CN, Caldwell MA, Ostenfeld T (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol 9:499–513

    PubMed  CAS  Google Scholar 

  109. Taguchi A, Soma T, Tanaka H et al (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Takagi Y, Takahashi J, Saiki H et al (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Tat PA, Sumer H, Jones KL et al (2010) The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplant 19:525–536

    PubMed  Google Scholar 

  112. Thored P, Arvidsson A, Cacci E et al (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747

    PubMed  CAS  Google Scholar 

  113. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302

    PubMed  CAS  Google Scholar 

  114. Tsuji O, Miura K, Okada Y et al (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 107:12704–12709

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Uccelli A, Zappia E, Benvenuto F et al (2006) Stem cells in inflammatory demyelinating disorders: a dual role for immunosuppression and neuroprotection. Expert Opin Biol Ther 6:17–22

    PubMed  CAS  Google Scholar 

  116. Vendrame M, Cassady J, Newcomb J et al (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    PubMed  Google Scholar 

  117. Vescovi AL, Snyder EY (1999) Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol 9:569–598

    PubMed  CAS  Google Scholar 

  118. Vieira NM, Brandalise V, Zucconi E et al (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289

    PubMed  CAS  Google Scholar 

  119. Voss HU, Uluc AM, Dyke JP et al (2006) Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116:2005–2011

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Walton NM, Sutter BM, Chen HX et al (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133:3671–3681

    PubMed  CAS  Google Scholar 

  121. Wang L, Zhang Z, Wang Y et al (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    PubMed  CAS  Google Scholar 

  122. Willing AE, Lixian J, Milliken M et al (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307

    PubMed  CAS  Google Scholar 

  123. Woodbury D, Schwarz EJ, Prockop DJ et al (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    PubMed  CAS  Google Scholar 

  124. Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917

    PubMed  CAS  Google Scholar 

  125. Yang J, Yan Y, Ciric B et al (2010a) Evaluation of bone marrow- and brain-derived neural stem cells in therapy of central nervous system autoimmunity. Am J Pathol 177:1989–2001

    Google Scholar 

  126. Yang WZ, Zhang Y, Wu F et al (2010b) Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med 8:75

    Google Scholar 

  127. Yasuhara T, Matsukawa N, Yu G et al (2006a) Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev Neurosci 17:215–225

    Google Scholar 

  128. Yasuhara T, Matsukawa N, Yu G et al (2006b) Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant 15:231–238

    Google Scholar 

  129. Yasuhara T, Hara K, Maki M et al (2008) Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab 28:1804–1810

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Yu SJ, Soncini M, Kaneko Y et al (2009) Amnion: a potent graft source for cell therapy in stroke. Cell Transplant 18:111–118

    PubMed  Google Scholar 

  132. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    PubMed  CAS  Google Scholar 

  133. Zhang J, Li Y, Chen J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26

    PubMed  CAS  Google Scholar 

  134. Zhao LR, Duan WM, Reyes M et al (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    PubMed  Google Scholar 

  135. Zuba-Surma EK, Klich I, Greco N et al (2010) Optimization of isolation and further characterization of umbilical-cord-bloodderived very small embryonic/epiblast-like stem cells (VSELs). Eur J Haematol 84:34–46

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan PhD .

Editor information

Editors and Affiliations

Conclusion

Conclusion

The limited capacity for neurogenesis in the human CNS makes neurological disease especially difficult to treat. Stem cell research may play an important role in the treatment of neurological diseases through cell replacement and stimulation of endogenous repair systems. However, there are still numerous questions that remain unanswered with regard to stem cell therapies . Several topics of investigation include optimal cell type and dosage, mechanism of action, and route of administration. These answers depend largely on the targeted disease and desired mechanism of action. As discussed, recent studies have also found success in using stem cells as trophic factors. The use of genetically modified stem cells shows promise in correcting degenerative disorders by over expressing and stimulating the secretion of endogenous neurotrophic factors. The efficacy of stem cell therapies will likely be related to the extent of which the cells exhibit trophic factors, and other secreted therapeutic molecules (e.g., anti-inflammatory chemokies and cytokines). While substantial progress has been made in neuroregenerative stem cell therapies, further investigation is needed to optimize them for clinical use.

Acknowledgments

The Borlongan Laboratory is supported by NIH NINDS UO15U01NS055914-04, NIH NINDS R01NS071956-01, James and Esther King Foundation for Biomedical Research Program, Department of Defense TATRC Program, USF Signature Program in Interdisciplinary Neuroscience, San Bio Inc., Celgene Cellular Therapeutics, KMPHC, and Neural Stem Inc. CVB has patents and pending patents on cell therapy.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tajiri, N. et al. (2014). Stem Cell Therapies in Neurology. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_7

Download citation

Publish with us

Policies and ethics