Skip to main content

Human CD34-negative Hematopoietic Stem Cells

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Based on the recent development of fluorescence-activated cell sorting (FACS) technology, murine hematopoietic stem cells (HSCs) can be purified at the single cell level. The immunophenotype of murine HSCs is CD34low/−c-kit+Sca-1+Lin (CD34 KSL) cells. However, the characterization of primitive human HSCs has not been fully elucidated. The biology of human HSCs is a current topic of interest that has important implications for clinical HSC transplantation as well as basic research on HSCs. Recently, human cord blood (CB)-derived CD34 HSCs, a counterpart of murine CD34low/− KSL cells, were successfully identified using an intra-bone marrow injection (IBMI) method. This review aims to update the concept of the immunophenotype and functional characteristics of human primitive CD34 HSCs. In addition, the significance of the application of the IBMI technique in clinical CB stem cell transplantation is also discussed. Recent rapid advances in understanding the biological nature of HSCs may make it possible to fully characterize the most primitive class of human HSCs, thereby clarifying the human HSC hierarchy, in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87:1–13

    PubMed  CAS  Google Scholar 

  2. Vogel W, Scheding S, Kanz L, Brugger W (2000) Clinical applications of CD34+peripheral blood progenitor cells (PBPC). Stem Cells 18:87–92

    Article  PubMed  CAS  Google Scholar 

  3. Civin C, Trischmann T, Kadan NS et al (1996) Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 14:2224–2233

    PubMed  CAS  Google Scholar 

  4. Sonoda Y, Sakabe H, Ohmisono Y, Tanimukai S, Yokota S, Nakagawa S, Clark SC, Abe T (1994) Synergistic actions of stem cell factor and other burst-promoting activities on proliferation of CD34+highly purified blood progenitors expressing HLA-DR or different levels of c-kit protein. Blood 84:4099–4106

    PubMed  CAS  Google Scholar 

  5. Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, Broxmeyer HE, Cooper S, Hague N, Moore M, Lasky LA (1996) Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87:479–490

    PubMed  CAS  Google Scholar 

  6. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S (1999) Ex vivo generation of CD34+ cells from CD34−hematopoietic cells. Blood 94:4053–4059

    PubMed  CAS  Google Scholar 

  8. Ando K (2002) Human CD34 hematopoietic stem cells: basic futures and clinical relevance. Int J Hematol 75:370–375

    Article  PubMed  Google Scholar 

  9. Guo Y, Lubbert M, Engelhardt M (2003) CD34 hematopoietic stem cells: current concepts and controversies. Stem Cells 21:15–20

    Article  PubMed  CAS  Google Scholar 

  10. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M (1998) Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+cells. Exp Hematol 26:353–360

    PubMed  CAS  Google Scholar 

  11. Fujisaki T, Berger MG, Rose-John S, Eaves CJ (1999) Rapid differentiation of a rare subset of adult human LinCD34CD38 cells stimulated by multiple growth factors in vitro. Blood 94:1926–1932

    PubMed  CAS  Google Scholar 

  12. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M (2000) Isolation and characterization of human CD34Lin and CD34+Lin hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95:2813–2820

    PubMed  CAS  Google Scholar 

  13. Ishii M, Matsuoka Y, Sasaki Y, Nakatsuka R, Takahashi M, Nakamoto T, Yasuda K, Matsui K, Asano H, Uemura Y, Tsuji T, Fukuhara S, Sonoda Y (2011) Development of a high-resolution purification method for precise functional characterization of primitive human cord-blood-derived CD34-negative SCID-repopulating cells. Exp Hematol 39:203–213

    Article  PubMed  CAS  Google Scholar 

  14. Goodell MA, Rosenzweig M, Kim H, Marks DF, Demaria M, Paradis G, Grupp S, Sieff CA, Mulligan RC, Jahnson P (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  PubMed  CAS  Google Scholar 

  15. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 99:12339–12344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic cell. Science 273:242–245

    Article  PubMed  CAS  Google Scholar 

  17. van derLJC, Ploemacher RE (1995) Marrow- and spleen-seeding efficiencies of all murine hematopoietic stem cell subsets are decreased by preincubation with hematopoietic growth factors. Blood 85:2598–2606

    Google Scholar 

  18. Seita J, Ema H, Ooehara J, Yamazaki S, Tadokoro Y, Yamasaki A, Eto K, Takaki S, Takatsu K, Nakauchi H (2007) Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci U S A 104:2349–2354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2554

    PubMed  CAS  Google Scholar 

  20. Ito T, Tajima F, Ogawa M (2000) Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp Hematol 28:1269–1273

    Article  PubMed  CAS  Google Scholar 

  21. Tajima F, Sato T, Laver JH, Ogawa M (2000) CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony-stimulating factor. Blood 96:1989–1993

    PubMed  CAS  Google Scholar 

  22. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844–2853

    PubMed  CAS  Google Scholar 

  23. Moore MAS (1991) Clinical implications of positive and negative hematopoietic cell regulators. Blood 78:1–19

    PubMed  CAS  Google Scholar 

  24. Larochelle A, Vormoor J, Hanenberg H, Wang JCY, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2:1329–1337

    Article  PubMed  CAS  Google Scholar 

  25. Guenechea G, Gan OI, Dorrell C, Dick JE (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2:75–82

    Article  PubMed  CAS  Google Scholar 

  26. Hogan CJ, Shpall EJ, Keller G (2002) Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A 99:413–418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, Fujimura Y, Tsuji K, Ikehara S, Sonoda Y (2003) SCID-repopulating cell activity of human cord blood-derived CD34 cells assured by intra-bone marrow injection. Blood 101:2924–2931

    Article  PubMed  CAS  Google Scholar 

  28. Wang JCY, Doedens M, Dick JE (1997) Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by quantitative in vivo SCID-repopulating cell assay. Blood 89:3919–3924

    PubMed  CAS  Google Scholar 

  29. Verlinden SEF van Es HHG, van Bekkum DW (1998) Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD/SCID mice. Exp Hematol 26:627–630

    PubMed  CAS  Google Scholar 

  30. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R, Iida H, Ikehara S (2001) Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97:3292–3299

    Article  PubMed  CAS  Google Scholar 

  31. Kimra T, Matsuoka Y, Murakami M, Kimura T, Takahashi M, Nakamoto T, Yasuda K, Matsui K, Kobayashi K, Imai S, Asano H, Nakatsuka R, Uemura Y, Sasaki Y, Sonoda Y (2010) In vivo dynamics of human cord blood-derived CD34- SCID-repopulating cells using intra-bone marrow injection. Leukemia 24:162–168

    Article  Google Scholar 

  32. Tsuji T, Ogasawara H, Aoki Y, Tsurumaki Y, Kodama H (1996) Characterization of murine stromal cell clones established from bone marrow and spleen. Leukemia 10:803–812

    PubMed  CAS  Google Scholar 

  33. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  34. Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, Deutsch V, Gunetti M, Piacibello W, Nagler A, Lapidot T (2002) Human CD34+CXCR4 sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood 100:2778–2786

    Article  PubMed  CAS  Google Scholar 

  35. Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y, Kato S, Hotta T (2003) A highly sensitive strategy for scid-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 101:2905–2913

    Article  PubMed  CAS  Google Scholar 

  36. Papayannopoulou T, Priestley GV, Nakamoto B (1998) Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/kit ligand pathway. Blood 91:2231–2239

    PubMed  CAS  Google Scholar 

  37. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    PubMed  CAS  Google Scholar 

  38. Kimura T, Wang J, Matsui K, Imai S, Yokoyama S, Nishikawa S, Ikehara S, Sonoda Y (2004) Proliferative and migratory potentials of human cord blood-derived CD34 severe combined immunodeficiency repopulating cells that retain secondary reconstituting capacity. Int J Hematol 79:328–333

    Article  PubMed  Google Scholar 

  39. Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M (2003) Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol 31:406–412

    Article  PubMed  CAS  Google Scholar 

  40. Sonoda Y, Kimura T, Sakabe H, Tanimukai S, Ogmizono Y, Nakagawa S, Yokota S, Lyman SD, Abe T (1997) Human flt3 ligand acts on myeloid as well as multipotential progenitors derived from purified CD34+ blood progenitors expressing different levels of c-kit protein. Eur J Hematol 58:257–264

    Article  CAS  Google Scholar 

  41. Lyman SD, Jacobsen SEW (1998) c-kit ligand and flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–1134

    PubMed  CAS  Google Scholar 

  42. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beihack GF, Shizuru JA, Weissman IL (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    Article  PubMed  CAS  Google Scholar 

  43. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, Sasaki Y, Jacobsen SEW (2001) Upregulation of flt3 expression within the bone marrow LinSca-1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    Article  PubMed  CAS  Google Scholar 

  44. McKenna HJ, Stocking KL, Miller RE, Brasel K, Smedt TD, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Lyman SD, Peschon JJ (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    PubMed  CAS  Google Scholar 

  45. Kimura T, Asada R, Wang J, Kimura T, Morioka M, Matsui K, Kobayashi K, Henmi K, Imai S, Kita M, Tsuji T, Sasaki Y, Ikehara S, Sonoda Y (2007) Identification of long-term repopulating potential of human cord blood-derived CD34flt3 severe combined immunodeficiency-repopulating cells by intra-bone marrow injection. Stem Cells 25:1348–1355

    Article  PubMed  CAS  Google Scholar 

  46. Sitnicka E, Buza-Vidas N, Larsson S, Nygren JM, Liuba K, Jacobsen SEW (2003) Human CD34+hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cell. Blood 102:881–886

    Article  PubMed  CAS  Google Scholar 

  47. Ebihara Y, Wada M, Ueda T et al (2002) Reconstitution of human haematopoiesis in non-obese diabetic/severe combined immunodeficient mice by clonal cells expanded from single CD34+CD38 cells expressing flk2/flt3. Br J Haematol 119:525–534

    Article  PubMed  Google Scholar 

  48. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SEW (2005) Identification of flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121:295–306

    Article  PubMed  CAS  Google Scholar 

  49. Dao MA, Arevalo J, Nolta JA (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101:112–118

    Article  PubMed  CAS  Google Scholar 

  50. Boxall SA, Cook GP, Pearce D, Bonnet D, El-Sherbiny YM, Blundell MP, Howe SJ, Leek JP, Markham AF, de Wynter EA (2009) Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplant 43:627–635

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, Fujioka T, Kohno H, Sasaki Y, Matsui K, Asano H, Kaneko K, Sonoda Y (2014) CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 28:1308–1315

    Google Scholar 

  52. Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR (1999) The molecular characterization of the fetal stem cell marker AA4. Immunity 10:691–700

    Article  PubMed  CAS  Google Scholar 

  53. Danet G, Luogo JL, Butler G, Lu MM, Tenner AJ, Simon MC, Bonnet DA (2002) C1qRp define a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci U S A 99:10441–10445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Anjos-Alfonso F, Currie E, Palmer HG, Foster KE, Taussig DC, Bonnet D (2013) CD34- cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13:161–174

    Article  Google Scholar 

  55. Ikewaki N, Yamato H, Kulski JK, Inoko H (2010) Flow cytometric identification of CD93 expression on naïve T lymphocytes (CD4+CD45RA+ cells) in human neonatal umbilical cord blood. J Clin Immunol 30:723–733

    Article  PubMed  CAS  Google Scholar 

  56. Mccune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1998) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  Google Scholar 

  57. Baum CM, Weissman IL, Tsukamoto AS, Buckle A-M, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A 89:2804–2808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Craig W, Kay R, Cutler RL, Lansdorp PM (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177:1331–1342

    Article  PubMed  CAS  Google Scholar 

  59. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221

    Article  PubMed  CAS  Google Scholar 

  61. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Mansson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SEW (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684

    Article  PubMed  CAS  Google Scholar 

  62. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoitin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi M, Matsuoka Y, Iwaki R, Nakatsuka R, Fujioka T, Kohno H, Matsui K, Asano H, Sasaki Y, Kaneko K, Sonoda Y (2012) Functional significance of MPL expression in the human primitive hematopoietic stem cell compartment. The 54th annual meeting of the American society of hematology, Dec 8, Atlanta, USA (Abstr)

    Google Scholar 

  64. Doulatov S, Notta F, Eppert K, Nguyen L, Ohashi PS, Dick JE (2010) Revised map of the human progenitor hierarchy shows the origin of macrophage and dendritic cells in early lymphoid development. Nat Immunol 11:585–593

    Article  PubMed  CAS  Google Scholar 

  65. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136

    Article  PubMed  CAS  Google Scholar 

  66. Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C, Essers MA, Macdonald HR, Trump A (2007) Dormant and self-renewing hematopoietic stem cells and their niche. Ann N Y Acad Sci 1106:64–75

    Article  PubMed  CAS  Google Scholar 

  67. Smith JNP, Calvi LM (2013) Current concepts in bone marrow microenvironmental regulation of hematopoietic stem and progenitor cells. Stem Cells 31:1044–1050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Matsuoka Y, Sasaki Y, Takahashi M, Nakatsuka R, Uemura Y, Inoue M, Ogawa H, Takahashi T, Ishikawa J, Hino H, Sonoda Y (2010) Prospective isolation and functional characterization of human bone marrow-derived hematopoietic stem cell-supportive mesenchymal stromal cells. Blood 116:1575–1576 (Abstr)

    Google Scholar 

  69. Brunstein GG, Wagner JE (2006) Umbilical cord blood transplantation and banking. Annu Rev Med 57:403–417

    Article  PubMed  CAS  Google Scholar 

  70. Frassoni F, Gualandi F, Podesta M, Raiola AM, Ibatici A, Piaggio G, Sessarego M, Sessarengo N, Gobbi M, Sacchi N, Labopin M, Bacigalupo A (2008) Direct intrabone transplant of unrelated cord-blood cells in acute leukemia: a phase I/II study. Lancet Oncol 9:831–839

    Article  PubMed  CAS  Google Scholar 

  71. Brunstein CG, Barker JN, Weisdorf DJ, DeFor TE, McKenna D, Chong SY, Miller JS, McGlave PB, Wagner JE (2009) Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant 43:935–940

    Article  PubMed  CAS  Google Scholar 

  72. Okada M, Yoshihara S, Taniguchi K, Kaida K, Ikegami K, Kato R, Tamaki H, Inoue T, Soma T, Kai S, Kato S, Ogawa H (2012) Intrabone marrow transplantation of unwashed cord blood using reduced-intensity conditioning treatment: a phase I study. Biol Blood Marrow Transplant 18:633–639

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Sonoda MD, PhD .

Editor information

Editors and Affiliations

Conclusions and Future Prospects

Conclusions and Future Prospects

The relationship of primitive HSCs within the human HSC hierarchy has been difficult to clarify due to the heterogeneity of the stem cell compartment. This heterogeneity results in major problems in the isolation/purification of most primitive human HSCs. We successfully developed a sensitive SRC assay system using the IBMI technique to identify a new class of CB-derived CD34 HSCs [13, 27, 31, 38, 51]. Based on our current data obtained using flow cytometry and serial transplantation analyses, we propose that the surface immunophenotype of the most primitive human LTR-HSCs is LinCD34FLT3c-kit−/lowTie2KDRThy1low/−CD49flow/−CD45RACD110CD133+ (Fig. 4.8). However, the frequency of CB-derived CD34 SRCs is 1/142 in 18LinCD34CD133+ cells [51] at the present time, which is still low in comparison to that of CD34+CD38 SRCs (1/40 cells) (31). In order to more effectively enrich/purify human CD34 LTR-HSCs at the single cell level, it is very important to identify another reliable positive marker for human LTR-HSCs beside CD133. Our goal is to achieve the complete purification of most primitive human HSCs, enabling the development of stem cell-based cellular and genetic therapies for various hematological and non-hematological diseases.

The molecular mechanisms that regulate the self-renewal and/or differentiation of human HSPCs are poorly understood because our understanding of these mechanisms, which control hematopoiesis, has primarily been obtained from mouse models. However, the cellular properties of murine and human HSCs appear to differ. Therefore, these analyses should be performed using purified human HSCs to confirm the data obtained from mouse models.

The application of our sensitive SRC assay system using the IBMI technique may make it possible to discover other hitherto unidentified HSCs in various organs and/or identify new markers for LTR-HSCs. It is also important to clarify whether the BM or mobilized PB contains an equivalent class of CD34 SRCs. From another point of view, the candidate positive markers for primitive human HSCs, such as CD133 and MPL, are expressed differently on the surface of CB- and BM-derived 18LinCD34 cells [51](Matsuoka and Sonoda, unpublished data). These results suggest that human CB and BM contain different classes of HSCs. As described in this review, CD34 HSCs continue to be heterogeneous populations and are not completely purified at the single cell level. Therefore, an important issue, the developmental origin of these primitive CD34HSCs, has not been fully clarified and requires further investigation.

Acknowledgements

The author is grateful to Drs. Y. Matsuoka, M. Takahashi, R. Nakatsuka, K. Sumide, T. Fujioka, H. Kohno, and Y. Sasaki, for their contributions. The author also thanks Kirin Brewery Co. Ltd. (Tokyo, Japan) for providing the various growth factors. Ms. K. Ishino is also acknowledged for her valuable assistance in preparing the manuscript.

This work was supported by Grants-in-Aid for Scientific Research on Priority Areas (Grant No. 15039227) and for Scientific Research C (Grant Nos. 15591015, 19591144, 21591251, and 24591432) from the Ministry of Education, Science and Culture of Japan, a grant from Haiteku Research Center of the Ministry of Education, a grant from the Science Frontier Program of the Ministry of Education, a grant from the Twenty-first Century Center of Excellence (COE) program of the Ministry of Education, a grant from the Promotion and Mutual Aid Corporation for Private Schools of Japan, a grant from Kansai Medical University (Research grant B), grants from MEXT-supported Program for the Strategic Research Foundation at Private Universities (2011–2016 and 2012–2017), a grant from the Adaptable and Seamless Technology Transfer Program through target-driven R&D, JST, a grant fromthe Japan Leukemia Research Foundation, a grant from the Mitsubishi Pharma Research Foundation, a grant from the Terumo Life Science Foundation, and a grant from the SENSHIN Medical Research Foundation.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sonoda, Y. (2014). Human CD34-negative Hematopoietic Stem Cells. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_4

Download citation

Publish with us

Policies and ethics