Skip to main content

Cord Blood Stem Cells

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Several stem and progenitor cells (SPCs) have been identified in human umbilical cord blood (UCB), bringing these unique cells as an important target for multitude experimental and clinical studies. Cord blood represents not only a rich source of applicable hematopoietic stem cells (HSCs) involved in hematopoietic and immunological system reconstitution but also an important reservoir of heterogeneous fraction of non-HSCs that may be utilized in regeneration of other tissue types. Such primitive SPCs belonging to non-hematopoietic compartment of UCB have been already described by several investigators and may include: very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPC), human UCB-neural stem cells (HUCB-NSC), unrestricted somatic stem cells (USSC), mesenchymal stem cells (MSC), multilineage progenitor cells, and other progenitor fractions. In some cases, vast similarities observed between those populations may indicate their possible fenotypic and functional overlap. In fact, some of non-hematopoietic UCB-derived SPCs may represent related fractions of primitive cells, but identified by various distinct experimental methods and protocols and eventually described as different populations.

UCB-derived non-HSC populations have been characterized according to their morphology, immunophenotype as well as proliferation and differentiation potentials. The biological immaturity, the ability to produce large quantities of homogeneous cells and to differentiate into a variety of specialized cell types, indicate the UCB-SPCs as suitable source of cells for cell-based therapies, regenerative medicine, and tissue engineering. Moreover, in case of human clinical specimens, UCB may be an alternative stem cell source that is ethically acceptable and easily available. This chapter focuses and summarizes the characteristics of selected human UCB-derived non-hematopoietic SPCs and their potential use for tissue and cell regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali H, Al-Mulla F (2012) Defining umbilical cord blood stem cells. Stem Cell Discov 2:15–23

    Article  CAS  Google Scholar 

  2. Ende M, Ende N (1972) Hematopoietic transplantation by means of fetal (cord) blood: a new method. Va Med Mon (1918) 99:276–280

    CAS  Google Scholar 

  3. Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  4. Semenov OV, Koestenbauer S, Riegel M et al (2010) Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 202:193.e1–193.e13

    Article  PubMed  Google Scholar 

  5. Vellasamy S, Sandrasaigaran P, Vidyadaran S et al (2012) Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J Stem Cells 4:53–61

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chevallier P, Robillard N, Illiaquer M et al (2013) Characterization of various blood and graft sources: a prospective series. Transfusion 53:2020–2026

    Article  PubMed  Google Scholar 

  7. Michejda M (2004) Which stem cells should be used for transplantation? Fetal Diagn Ther 19:2–8

    Article  PubMed  Google Scholar 

  8. Zhong XY, Zhang B, Asadollahi R et al (2010) Umbilical cord blood stem cells: what to expect. Ann N Y Acad Sci 1205:17–22

    Article  PubMed  Google Scholar 

  9. Mayani H (2011) Umbilical cord blood: lessons learned and lingering challenges after more than 20 years of basic and clinical research. Arch Med Res 42:645–651

    Article  PubMed  Google Scholar 

  10. Brunstein CG, Gutman JA, Weisdorf DJ et al (2010) Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood 116:4693–4699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Scaradavou A, Brunstein CG, Eapen M et al (2013) Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood 121:752–758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ratajczak MZ, Zuba-Surma EK, Machalinski B et al (2007) Bone-marrow-derived stem cells-our key to longevity? J Appl Genet 48:307–319

    Article  PubMed  Google Scholar 

  13. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  14. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  15. McGuckin CP, Forraz N, Baradez MO et al (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255

    Article  PubMed  CAS  Google Scholar 

  16. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  17. Zuba-Surma EK, Kucia M, Ratajczak J et al (2009) “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry A 75:4–13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buzanska L, Machaj EK, Zablocka B et al (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138

    PubMed  CAS  Google Scholar 

  19. Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Kucia M, Halasa M, Wysoczynski M et al (2007) Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    Article  PubMed  CAS  Google Scholar 

  21. Zuba-Surma EK, Klich I, Greco N et al (2010) Optimization of isolation and further characterization of umbilical-cord-blood-derived very small embryonic/epiblast-like stem cells (VSELs). Eur J Haematol 84:34–46

    Article  PubMed  CAS  Google Scholar 

  22. McGuckin C, Jurga M, Ali H et al (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3:1046–1055

    Article  PubMed  CAS  Google Scholar 

  23. Case J, Mead LE, Bessler WK et al (2007) Human CD34+AC133+VEGFR-2+cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118

    Article  PubMed  CAS  Google Scholar 

  24. Habich A, Jurga M, Markiewicz I et al (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925

    Article  PubMed  CAS  Google Scholar 

  25. Hou L, Cao H, Wang D et al (2003) Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol 78:256–261

    Article  PubMed  Google Scholar 

  26. Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  27. Lee MW, Moon YJ, Yang MS et al (2007) Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 358:637–643

    Article  PubMed  CAS  Google Scholar 

  28. Knudtzon S (1974) In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43:357–361

    PubMed  CAS  Google Scholar 

  29. Vaziri H, Dragowska W, Allsopp RC et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91:9857–9860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Mayani H, Lansdorp PM (1998) Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 16:153–165

    Article  PubMed  CAS  Google Scholar 

  31. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Buchheiser A, Liedtke S, Looijenga LH et al (2009) Cord blood for tissue regeneration. J Cell Biochem 108:762–768

    Article  PubMed  CAS  Google Scholar 

  33. Lee MW, Jang IK, Yoo KH et al (2010) Stem and progenitor cells in human umbilical cord blood. Int J Hematol 92:45–51

    Article  PubMed  Google Scholar 

  34. Pelosi E, Castelli G, Testa U (2012) Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells Mol Dis 49:20–28

    Article  PubMed  Google Scholar 

  35. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  36. Zuba-Surma EK, Kucia M, Abdel-Latif A et al (2008) Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med 12:292–303

    Article  PubMed  Google Scholar 

  37. Zuba-Surma EK, Kucia M, Wu W et al (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 73A:1116–1127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cell—regenerative medicine search for almighty cell. J Autoimmun 30:151–162

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zuba-Surma EK, Wojakowski W, Ratajczak MZ et al (2011) Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal 15:1821–1834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Kucia M, Zuba-Surma EK, Wysoczynski M et al (2007) Adult marrow-derived very small embryonic-like stem cells and tissue engineering. Expert Opin Biol Ther 7:1499–1514

    Article  PubMed  CAS  Google Scholar 

  41. Bhartiya D, Shaikh A, Nagvenkar P et al (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21:1–6

    Article  PubMed  CAS  Google Scholar 

  42. Ratajczak J, Zuba-Surma E, Klich I et al (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Zuba-Surma EK, Ratajczak MZ (2010) Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Current protocols in cytometry/editorial board, J Paul Robinson, managing editor [et al] Chap. 9:Unit9 29

    Google Scholar 

  44. Anand S, Bhartiya D, Sriraman K et al (2013) Quiescent very small embryonic-like stem cells resist oncotherapy and can restore spermatogenesis in germ cell depleted mammalian testis. Stem Cells Dev Sept 30

    Google Scholar 

  45. Sovalat H, Scrofani M, Eidenschenk A et al (2011) Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp Hematol 39:495–505

    PubMed  CAS  Google Scholar 

  46. Iwaki R, Nakatsuka R, Matsuoka YM et al (2012) Development of a highly efficient method for isolating very small embryonic-like stem cells identified in adult mouse bone and their stem cell characteristics. (Abstract #2345). 54th ASH annual meeting (8–11 Dec 2012). Atlanta, GA, USA

    Google Scholar 

  47. Wojakowski W, Tendera M, Kucia M et al (2009) Mobilization of bone marrow-derived Oct-4+SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9

    Article  PubMed  CAS  Google Scholar 

  48. Paczkowska E, Kucia M, Koziarska D et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    Article  PubMed  CAS  Google Scholar 

  49. Havens AM, Shiozawa Y, Jung Y et al (2013) Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells Dev 22:622–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Howe M, Zhao J, Bodenburg Y et al (2009) Oct-4 A isoform is expressed in human cord blood-derived CD133 stem cells and differentiated progeny. Cell Prolif 42:265–275

    Article  PubMed  CAS  Google Scholar 

  51. Danova-Alt R, Heider A, Egger D et al (2012) Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS ONE 7:e34899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Basile DP, Yoder MC (2014) Circulating and tissue resident endothelial progenitor cells. J Cell Physiol 229:10–16

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Sieveking DP, Buckle A, Celermajer DS et al (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668

    Article  PubMed  CAS  Google Scholar 

  54. Rehman J (2011) Chipping away at the surface of the endothelial progenitor cell (EPC) mystery. J Mol Med (Berl) 89:943–945

    Article  Google Scholar 

  55. Phuc PV, Ngoc VB, Lam DH et al (2012) Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank 13:341–351

    Article  PubMed  CAS  Google Scholar 

  56. Shin JW, Lee DW, Kim MJ et al (2005) Isolation of endothelial progenitor cells from cord blood and induction of differentiation by ex vivo expansion. Yonsei Med J 46:260–267

    Article  PubMed  PubMed Central  Google Scholar 

  57. Estes ML, Mund JA, Mead LE et al (2010) Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A 77:831–839

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JH, Lee SH, Yoo SY et al (2013) CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases. Arterioscler Thromb Vasc Biol 33:1622–1634

    Article  PubMed  CAS  Google Scholar 

  59. Lin RZ, Dreyzin A, Aamodt K et al (2011) Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant 20:515–522

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ladran I, Tran N, Topol A et al (2013) Neural stem and progenitor cells in health and disease. Wiley interdisciplinary reviews systems biology and medicine

    Google Scholar 

  61. Domanska-Janik K, Buzanska L, Lukomska B (2008) A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells. Int J Dev Biol 52:237–248

    Article  PubMed  Google Scholar 

  62. Sun W, Buzanska L, Domanska-Janik K et al (2005) Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23:931–945

    Article  PubMed  CAS  Google Scholar 

  63. Jurga M, Lipkowski AW, Lukomska B et al (2009) Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods 15:365–372

    Article  PubMed  CAS  Google Scholar 

  64. Zangiacomi V, Balon N, Maddens S et al (2008) Cord blood-derived neurons are originated from CD133+/CD34 stem/progenitor cells in a cell-to-cell contact dependent manner. Stem Cells Dev 17:1005–1016

    Article  PubMed  CAS  Google Scholar 

  65. Kogler G, Radke TF, Lefort A et al (2005) Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol 33:573–583

    Article  PubMed  Google Scholar 

  66. Santourlidis S, Wernet P, Ghanjati F et al (2011) Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 6:60–69

    Article  PubMed  CAS  Google Scholar 

  67. Buchheiser A, Houben AP, Bosch J et al (2012) Oxygen tension modifies the ‘stemness’ of human cord blood-derived stem cells. Cytotherapy 14:967–982

    Article  PubMed  CAS  Google Scholar 

  68. Kluth SM, Buchheiser A, Houben AP et al (2010) DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 19:1471–1483

    Article  PubMed  CAS  Google Scholar 

  69. Handschel J, Naujoks C, Langenbach F et al (2010) Comparison of ectopic bone formation of embryonic stem cells and cord blood stem cells in vivo. Tissue Eng Part A 16:2475–2483

    Article  PubMed  CAS  Google Scholar 

  70. Myers TJ, Granero-Molto F, Longobardi L et al (2010) Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 10:1663–1679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Chugh AR, Zuba-Surma EK, Dawn B (2009) Bone marrow-derived mesenchymal stems cells and cardiac repair. Minerva Cardioangiol 57:185–202

    PubMed  CAS  Google Scholar 

  72. Bieback K, Kern S, Kluter H et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  PubMed  Google Scholar 

  73. Flynn A, Barry F, O’Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9:717–726

    Article  PubMed  CAS  Google Scholar 

  74. Carvalho MM, Teixeira FG, Reis RL et al (2011) Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther 6:221–228

    Article  PubMed  CAS  Google Scholar 

  75. Balasubramanian S, Venugopal P, Sundarraj S et al (2012) Comparison of chemokine and receptor gene expression between Wharton’s jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy 14:26–33

    Article  PubMed  CAS  Google Scholar 

  76. Forraz N, McGuckin CP (2011) The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 44(Suppl 1):60–69

    Article  PubMed  Google Scholar 

  77. Moon YJ, Lee MW, Yoon HH et al (2008) Hepatic differentiation of cord blood-derived multipotent progenitor cells (MPCs) in vitro. Cell Biol Int 32:1293–1301

    Article  PubMed  CAS  Google Scholar 

  78. Cho SR, Yang MS, Yim SH et al (2008) Neurally induced umbilical cord blood cells modestly repair injured spinal cords. Neuroreport 19:1259–1263

    Article  PubMed  Google Scholar 

  79. Moon YJ, Yoon HH, Lee MW et al (2009) Multipotent progenitor cells derived from human umbilical cord blood can differentiate into hepatocyte-like cells in a liver injury rat model. Transplant Proc 41:4357–4360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the European Union structural funds, Innovative Economy Operational Programme, grant No. POIG 01.02-00-109/09 “Innovative methods of stem cells applications in medicine” and Team grant (TEAM/2012-9/6) from the Foundation for Polish Science to EZS.3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa K. Zuba-Surma PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adamiak, M., Madeja, Z., Zuba-Surma, E. (2014). Cord Blood Stem Cells. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_3

Download citation

Publish with us

Policies and ethics