Skip to main content

Novel Therapeutic Approaches in Regenerative Medicine—Adult Tissue-Derived Very Small Embryonic-like Stem Cells and Harnessing Paracrine Signals of Adult Stem Cells

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Abstract

The regenerative medicine is searching for proper stem cells that could be employed for therapy to regenerate damaged solid organs (e.g., heart, Brain, or liver). It is striking that, for a variety of adult tissue-derived cells currently employed in experimental animal and clinical models (e.g., bone marrow or mobilized peripheral blood-derived CD34+ or CD133+ stem cells, mesenchymal stem cells), the observed final outcomes are often similar. This fact and the lack of convincing documentation for significant donor-recipient chimerism in organs (e.g., heart, liver, brain) in most of the patients treated with adult stem cells indicates that a mechanism other than transdifferentiation of stem cells infused systemically into peripheral blood or injected directly into damaged organs may play an important role in those cases where an obvious beneficial effect of stem cell therapy is observed. In this review, we will discuss the potential contribution of rare pluripotent/multipotent stem cells present in cell preparations (e.g., bone marrow, umbilical cord blood, mobilized peripheral blood) as well as a paracrine role of growth factors, cytokines, chemokines, bioactive lipids, and microvesicles (MVs) released from adult cells employed as cellular therapeutics in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  PubMed  CAS  Google Scholar 

  4. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  6. Wakayama T (2003) Cloned mice and embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Oncol Res 13:309–314

    PubMed  Google Scholar 

  7. Condic ML, Rao M (2008) Regulatory issues for personalized pluripotent cells. Stem Cells 26:2753–2758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lo B, Parham L, Alvarez-Buylla A, Cedars M, Conklin B, Fisher S et al (2010) Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning. Cell Stem Cell 6:16–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Blanpain C, Daley GQ, Hochedlinger K, Passegue E, Rossant J, Yamanaka S (2012) Stem cells assessed. Nat Rev 13:471–476

    Article  CAS  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nature Protoc 2:3081–3089

    Article  CAS  Google Scholar 

  12. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  13. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC et al (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7:e47559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G (2013) Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis 61:300–309

    Article  PubMed  Google Scholar 

  15. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK et al (2012) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 70:1238–1247

    Article  PubMed  Google Scholar 

  16. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  17. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  PubMed  CAS  Google Scholar 

  18. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299

    Article  PubMed  CAS  Google Scholar 

  19. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  CAS  Google Scholar 

  20. D’Ippolito G, Howard GA, Roos BA, Schiller PC (2006) Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Exp Hematol 34:1608–1610

    Article  PubMed  Google Scholar 

  21. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110:3438–3446

    Article  PubMed  CAS  Google Scholar 

  22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  23. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  24. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  26. Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M et al (2006) The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp 54:121–135

    Article  CAS  Google Scholar 

  27. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al (2007) Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    Article  PubMed  CAS  Google Scholar 

  28. Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A et al (2010) Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 19:1557–1570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kassmer SH, Bruscia EM, Zhang PX, Krause DS (2012) Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 30:491–499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H et al (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Havens AM, Shiozawa Y, Jung Y, Sun H, Wang J, McGee S et al (2013) Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells Dev 22:622–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:e11803

    Article  PubMed  PubMed Central  Google Scholar 

  33. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+ ) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    Article  PubMed  CAS  Google Scholar 

  34. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  PubMed  CAS  Google Scholar 

  35. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+  cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J 30:1313–1321

    Article  PubMed  Google Scholar 

  36. Howe AJ, Shand JA, Menown IB (2011) Advances in cardiology: clinical trial update. Future Cardiol 7:299–310

    Article  PubMed  Google Scholar 

  37. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M (2012) Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 26:23–33

    Article  PubMed  CAS  Google Scholar 

  38. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007) A hypothesis for an embryonic origin of pluripotent Oct-4(+ ) stem cells in adult bone marrow and other tissues. Leukemia 21:860–867

    PubMed  CAS  Google Scholar 

  39. Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ et al (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M et al (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24:1450–1461

    Article  PubMed  CAS  Google Scholar 

  41. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81:153–161

    Article  PubMed  CAS  Google Scholar 

  42. Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynska M, Ratajczak J (2012) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17

    Article  PubMed  CAS  Google Scholar 

  43. Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K et al (2013) The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordr) 35:315–330

    Article  CAS  Google Scholar 

  44. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC et al (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 39:225–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N et al (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ et al (2011) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 15:1319–1328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK et al (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhartiya D, Kasiviswananthan S, Shaikh A (2012) Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev 21:670–674

    Article  PubMed  CAS  Google Scholar 

  49. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K et al (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20:1451–1464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kucia M, Shin DM, Liu R, Ratajczak J, Bryndza E, Masternak MM et al (2011) Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia 25:1370–1374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ratajczak J, Shin DM, Wan W, Liu R, Masternak MM, Piotrowska K et al (2011) Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice-novel view on Igf-1, stem cells and aging. Leukemia 25:729–733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  53. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  PubMed  CAS  Google Scholar 

  54. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  55. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  PubMed  CAS  Google Scholar 

  56. Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ et al (2012) Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 21:1639–1652

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y et al (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  PubMed  CAS  Google Scholar 

  58. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128:747–762

    Article  PubMed  CAS  Google Scholar 

  59. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  60. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G et al (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Ragina NP, Schlosser K, Knott JG, Senagore PK, Swiatek PJ, Chang EA et al (2012) Downregulation of H19 improves the differentiation potential of mouse parthenogenetic embryonic stem cells. Stem cells Dev 21:1134–1144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Janowska-Wieczorek A, Majka M, Ratajczak J, Ratajczak MZ (2001) Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells 19:99–107

    Article  PubMed  CAS  Google Scholar 

  63. Ratajczak J, Kijowski J, Majka M, Jankowski K, Reca R, Ratajczak MZ (2003) Biological significance of the different erythropoietic factors secreted by normal human early erythroid cells. Leuk Lymphoma 44:767–774

    Article  PubMed  CAS  Google Scholar 

  64. Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S et al (2013) Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells-implications for tissue regeneration. Stem Cells 31:500–510

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C et al (2002) Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 99:1117–1129

    Article  PubMed  CAS  Google Scholar 

  66. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109:724–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19:7–12

    Article  PubMed  CAS  Google Scholar 

  68. Quesenberry PJ, Dooner MS, Aliotta JM (2010) Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp Hematol 38:581–592

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beaudoin AR, Grondin G (1991) Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta 1071:203–219

    Article  PubMed  CAS  Google Scholar 

  70. Barry OP, FitzGerald GA (1999) Mechanisms of cellular activation by platelet microparticles. Thromb Haemost 82:794–800

    PubMed  CAS  Google Scholar 

  71. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    Article  PubMed  CAS  Google Scholar 

  72. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  PubMed  CAS  Google Scholar 

  73. Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS, Greer KA et al (2007) Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–2256

    Article  PubMed  PubMed Central  Google Scholar 

  74. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  PubMed  CAS  Google Scholar 

  75. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D et al (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14:1605–1618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Camussi G, Cantaluppi V, Deregibus MC, Gatti E, Tetta C (2011) Role of microvesicles in acute kidney injury. Contrib Nephrol 174:191–199

    Article  PubMed  Google Scholar 

  77. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak MD, PhD .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Current therapeutic strategies in regenerative medicine employing adult stem cells for damaged solid organs are mainly based on utilization of their paracrine effects by secreted soluble factors and MVs [72, 73, 75, 76]. Overall, paracrine effects and MV-based therapies also open up new possibilities for clinical applications of iPSCs. Since in vivo application of iPSCs is limited by the high risk of teratoma formation by these cells, MVs from patient-derived iPSCs could be employed as a novel generation of therapeutics to rescue damaged organs and tissues. Based on this possibility, we envision that patient-derived iPSCs could be employed as MV-producing cells. Moreover, taking advantage of the recently proposed epigenetic memory of cells employed for generation of iPSCs [77], one can also envision that, for example, MVs from keratinocyte-derived iPSCs would be preferentially enriched for mRNA and miRNA for epidermis stem cells and thus affect regeneration of damaged skin (e.g., after burns), or similarly MVs isolated from supernatants of cardiomyocyte-derived iPSCs would have by similar mechanisms advantages in regeneration of damaged myocardium.

However, beside paracrine effects of more differentiated adult stem/progenitor cells it is also a hope for clinical application of pluripotent/multipotent isolated from the adult tissues and new data from our group [26, 44, 45] and other groups [28, 47, 49] has provided more evidence on the existence of primitive embryonic-like stem cells in murine adult tissues and their potential role in (1) tissue organ rejuvenation, (2) longevity, and (3) regeneration/repair of damaged tissues. Nevertheless, while murine BM-derived VSELs have been extensively characterized, we are aware that more work is needed to better characterize small CD133 + Lin CD45 cells at the molecular level in humans. We need to determine whether human VSELs have the same molecular signature (e.g., an open chromatin structure at the Oct4 promoter, modification of somatic imprinting, and the presence of bivalent domains) as their murine counterparts. If we can confirm that a similar imprinting-related mechanism operates for human VSELs, perhaps a controlled modulation of the somatic imprinted state to produce proper de novo methylation of somatic imprinted genes on the maternal and paternal chromosomes could increase the regenerative power of these cells [39] and lead to their broader application in the clinic. Of note, recently National Institutes of Health (NIH) sponsored a first clinical trial to employ human BM-derived VSELs for treatment of periodontitis lesions in patients [http://www.neostem.com/news/vsel1mgrant.html].

Acknowledgments

This work was supported by NIH grant 2R01 DK074720, the Stella and Henry Endowment and grant Maestro 2011/02/A/NZ4/00035 to MZR.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kucia, M., Suszynska, M., Ratajczak, J., Ratajczak, M. (2014). Novel Therapeutic Approaches in Regenerative Medicine—Adult Tissue-Derived Very Small Embryonic-like Stem Cells and Harnessing Paracrine Signals of Adult Stem Cells. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_2

Download citation

Publish with us

Policies and ethics