Skip to main content

Stem Cells in Infection and Sepsis

  • Chapter
  • First Online:
  • 797 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Severe infections, sepsis, and septic shock remain a major cause of death in the critically ill patients. Activation of systemic response to infection and disruption of most regulatory axes in the body lead to tissue injury and the development of organ failure. Moreover, reprogramming of the immune system results in the unsuccessful fight with pathogens and is the cause of vulnerability to nosocomial infections. Stem cell therapies may be a tempting option for treatment of this septic-induced organ injury. Also, a growing body of evidence supports the notion that different stem cell subpopulations may directly sense the pathogens and interact with the components of the immune system. This chapter covers the known interactions between hematopoietic, endothelial, and mesenchymal stem cells and the immune response during sepsis. We discuss potential applications of different stem cells in the therapy of sepsis and review available experimental data are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–787. doi:10.1038/35021228

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:2004−04-1559 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101(10):3765–3777. doi:10.1182/blood-2002−06–1887

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  PubMed  CAS  Google Scholar 

  5. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793–797. doi:10.1038/nature09135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, Lang S (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88(5):1005–1015. doi:10.1189/jlb.0410207

    Article  PubMed  CAS  Google Scholar 

  7. Brudecki L, Ferguson DA, Yin D, Lesage GD, McCall CE, El Gazzar M (2012) Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infect Immun 80(2):602–611. doi:10.1128/IAI.05480−11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Monch K, Hogerkorp CM, Adolfsson J, Borge OJ, Jacobsen SE (2001) Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 194(7):941–952

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Case J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10(11):1895–1907. doi:10.1089/ars.2008.2118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Caux C, Moreau I, Saeland S, Banchereau J (1992) Interferon-gamma enhances factor-dependent myeloid proliferation of human CD34+ hematopoietic progenitor cells. Blood 79(10):2628–2635

    PubMed  CAS  Google Scholar 

  11. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372. doi:2005−07-2657 [pii]

    Article  PubMed  CAS  Google Scholar 

  12. Corselli M, Chen CW, Crisan M, Lazzari L, Peault B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30(6):1104–1109. doi:10.1161/ATVBAHA.109.191643

    Article  PubMed  CAS  Google Scholar 

  13. Cribbs SK, Sutcliffe DJ, Taylor WR, Rojas M, Easley KA, Tang L, Brigham KL, Martin GS (2012) Circulating endothelial progenitor cells inversely associate with organ dysfunction in sepsis. Intensive Care Med 38(3):429–436. doi:10.1007/s00134-012-2480-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T (2009) The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23(11):2063–2074. doi:10.1038/leu.2009.155

    Article  PubMed  CAS  Google Scholar 

  15. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent J-L, Moreno R (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39(2):165–228. doi:10.1007/s00134-012-2769-8

    Article  PubMed  CAS  Google Scholar 

  16. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  CAS  Google Scholar 

  17. dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SH, Stewart DJ, Liles WC (2012) Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am J Pathol 181(5):1681–1692. doi:10.1016/j.ajpath.2012.08.009

    Article  PubMed  CAS  Google Scholar 

  18. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE (2001) Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 98(6):1782–1791

    Article  PubMed  CAS  Google Scholar 

  19. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFN-alpha activates dormant haematopoietic stem cells in vivo. Nature 458(7240):904–908. doi:10.1038/nature07815

    Article  PubMed  CAS  Google Scholar 

  20. Gao X, Chen W, Liang Z, Chen L (2011) Autotransplantation of circulating endothelial progenitor cells protects against lipopolysaccharide-induced acute lung injury in rabbit. Int Immunopharmacol 11 (10):1584–1590. doi:10.1016/j.intimp. 2011.05.019

    Article  PubMed  CAS  Google Scholar 

  21. Ghaly T, Rabadi MM, Weber M, Rabadi SM, Bank M, Grom JM, Fallon JT, Goligorsky MS, Ratliff BB (2011) Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia. Am J Physiol Renal Physiol 301(4):F802–812. doi:10.1152/ajprenal.00124.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+ )AC133(+ ) endothelial precursor cells. Circ Res 88(2):167–174

    Article  PubMed  CAS  Google Scholar 

  23. Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch IA (2000) Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med 28(7):2591–2594

    Article  PubMed  CAS  Google Scholar 

  24. Hoser GA, Skirecki T, Zlotorowicz M, Zielinska-Borkowska U, Kawiak J (2012) Absolute counts of peripheral blood leukocyte subpopulations in intraabdominal sepsis and pneumonia-derived sepsis: a pilot study. Folia Histochem Cytobiol 50(3):420–426. doi:10.5603/19751

    Article  PubMed  CAS  Google Scholar 

  25. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13 (3):260–268. doi:10.1016/S1473-3099(13)70001-X

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45(4):530–544. doi:10.1016/j.yjmcc.2008.08.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101. doi:10.1146/annurev.med.56.090203.104149

    Article  PubMed  CAS  Google Scholar 

  28. Kim ES, Chang YS, Choi SJ, Kim JK, Yoo HS, Ahn SY, Sung DK, Kim SY, Park YR, Park WS (2011) Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 12:108. doi:10.1186/1465-9921-12-108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Lee H, Ratajczak MZ (2009) Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp (Warsz) 57(4):269–278. doi:10.1007/s00005-009-0037-6

    Article  CAS  Google Scholar 

  30. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, Vincent J-L, Townsend S, Lemeshow S, Dellinger RP (2012) Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. The Lancet Infect Dis 12(12):919–924. doi:10.1016/s1473-3099(12)70239−6

    Article  Google Scholar 

  31. Li H (2013) Repair of lipopolysaccharide-induced acute lung injury in mice by endothelial progenitor cells, alone and in combination with simvastatin. CHEST J 144(3):876. doi:10.1378/chest.12-2429

    Article  CAS  Google Scholar 

  32. Lin CP, Lin FY, Huang PH, Chen YL, Chen WC, Chen HY, Huang YC, Liao WL, Huang HC, Liu PL, Chen YH (2013) Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. Biomed Res Int 2013:845037. doi:10.1155/2013/845037

    PubMed  PubMed Central  Google Scholar 

  33. Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26(1):279–289. doi:2007−0454 [pii]

    Article  PubMed  CAS  Google Scholar 

  34. Loomans CJ, van Haperen R, Duijs JM, Verseyden C, de Crom R, Leenen PJ, Drexhage HA, de Boer HC, de Koning EJ, Rabelink TJ, Staal FJ, van Zonneveld AJ (2009) Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 15(5–6):152–159. doi:10.2119/molmed.2009.00032

    PubMed  CAS  PubMed Central  Google Scholar 

  35. MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFN-gamma during acute bacterial infection. PLoS One 6(12):e28669. doi:10.1371/journal.pone.0028669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Mahieu T, Libert C (2007) Should we inhibit type I interferons in sepsis? Infect Immun 75(1):22–29. doi:IAI.00829−06 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+ ) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97(10):3075–3085

    Article  PubMed  CAS  Google Scholar 

  38. Mao M, Wang SN, Lv XJ, Wang Y, Xu JC (2010) Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats. Shock 34(2):196–204. doi:10.1097/SHK.0b013e3181d49457

    Article  PubMed  Google Scholar 

  39. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008. doi:S0092-8674(07)01356−6 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182(8):1047–1057. doi:10.1164/rccm.201001−0010OC

    Article  PubMed  CAS  Google Scholar 

  41. Mizrahi K, Stein J, Yaniv I, Kaplan O, Askenasy N (2013) TNF-alpha has tropic rather than apoptotic activity in human hematopoietic progenitors: involvement of TNF receptor-1 and caspase-8. Stem Cells 31(1):156–166. doi:10.1002/stem.1259

    Article  PubMed  CAS  Google Scholar 

  42. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812. doi:S1074-7613(06)00266−4 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. doi:10.1038/nm.1905

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, Tolosa E, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27(4):909–919. doi:10.1002/stem.7

    Article  PubMed  CAS  Google Scholar 

  45. Patschan SA, Patschan D, Temme J, Korsten P, Wessels JT, Koziolek M, Henze E, Muller GA (2011) Endothelial progenitor cells (EPC) in sepsis with acute renal dysfunction (ARD). Crit Care 15(2):R94. doi:10.1186/cc10100

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peters K, Unger RE, Brunner J, Kirkpatrick CJ (2003) Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res 60 (1):49–57. doi:S0008636303003973 [pii]

    Article  PubMed  CAS  Google Scholar 

  47. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Pistoia V (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162. doi:2007−0416 [pii]

    Article  PubMed  CAS  Google Scholar 

  48. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ, Kucia M, Janowska-Wieczorek A, Ratajczak J (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24(5):976–985. doi:10.1038/leu.2010.53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rebel VI, Hartnett S, Hill GR, Lazo-Kallanian SB, Ferrara JL, Sieff CA (1999) Essential role for the p55 tumor necrosis factor receptor in regulating hematopoiesis at a stem cell level. J Exp Med 190(10):1493–1504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Rodriguez S, Chora A, Goumnerov B, Mumaw C, Goebel WS, Fernandez L, Baydoun H, HogenEsch H, Dombkowski DM, Karlewicz CA, Rice S, Rahme LG, Carlesso N (2009) Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114(19):4064–4076. doi:10.1182/blood-2009−04–214916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Romieu-Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J (2009) Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182(12):7963–7973. doi:10.4049/jimmunol.0803864

    Article  PubMed  CAS  Google Scholar 

  52. Salomao R, Martins PS, Brunialti MK, Fernandes Mda L, Martos LS, Mendes ME, Gomes NE, Rigato O (2008) TLR signaling pathway in patients with sepsis. Shock 30(Suppl 1):73–77. doi:10.1097/SHK.0b013e318181af2a

    Article  PubMed  Google Scholar 

  53. Scumpia PO, Kelly-Scumpia KM, Delano MJ, Weinstein JS, Cuenca AG, Al-Quran S, Bovio I, Akira S, Kumagai Y, Moldawer LL (2010) Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J Immunol 184(5):2247–2251. doi:10.4049/jimmunol.0903652

    Article  PubMed  CAS  Google Scholar 

  54. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rossig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111(9):1184–1191. doi:111/9/1184 [pii]

    Article  PubMed  CAS  Google Scholar 

  55. Selleri C, Maciejewski JP, Sato T, Young NS (1996) Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 87(10):4149–4157

    PubMed  CAS  Google Scholar 

  56. Selleri C, Sato T, Anderson S, Young NS, Maciejewski JP (1995) Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol 165(3):538–546. doi:10.1002/jcp. 1041650312

    Article  PubMed  CAS  Google Scholar 

  57. Sioud M, Floisand Y (2007) TLR agonists induce the differentiation of human bone marrow CD34 + progenitors into CD11c + CD80/86 + DC capable of inducing a Th1-type response. Eur J Immunol 37(10):2834–2846. doi:10.1002/eji.200737112

    Article  PubMed  CAS  Google Scholar 

  58. Sioud M, Floisand Y, Forfang L, Lund-Johansen F (2006) Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34 + progenitor cells along the myeloid lineage. J Mol Biol 364(5):945–954. doi:S0022-2836(06)01278−2 pii]

    Article  PubMed  CAS  Google Scholar 

  59. Skirecki T, Borkowska-Zielińska U, Złotorowicz M, Hoser G (2012) Sepsis immunopathology: perspectives of monitoring and modulation of the immune disturbances. Arch Immunol Ther Exp (Warsz) 60(2):123–135. doi:10.1007/s00005-012-0166-1

    Article  CAS  Google Scholar 

  60. Skirecki T, Kawiak J, Hoser G, Tarnowski W, Zlotorowicz M, Zielinska-Borkowska U (2013) Effect of granulocyte colony-stimulating factor on circulating immune and stem cells in septic shock: revisit the basics and consider giving it another chance. Am J Respir Crit Care Med 187(2):217–219. doi:187/2/217 [pii]

    Article  PubMed  Google Scholar 

  61. Skirecki T, Zielińska-Borkowska U, Złotorowicz M, Kawiak J, Hoser G (2012) Mobilization of hematopoietic and nonhematopoietic stem cell subpopulations in sepsis: a preliminary report. Crit Care 16(Suppl 1):P8. doi:10.1186/cc10615

    Article  PubMed Central  Google Scholar 

  62. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333. doi:blood-2007−02-074997 [pii]

    Article  PubMed  CAS  Google Scholar 

  63. Suh W, Kim KL, Choi JH, Lee YS, Lee JY, Kim JM, Jang HS, Shin IS, Lee JS, Byun J, Jeon ES, Kim DK (2004) C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells. Biochem Biophys Res Commun 321(1):65–71. doi:10.1016/j.bbrc.2004.06.107

    Article  PubMed  CAS  Google Scholar 

  64. Sun J, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC (2011) Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4 + CD25 + Forkhead Boxp3 (FOXP3) + regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 27(5):587–596. doi:10.1159/000329980

    Article  PubMed  CAS  Google Scholar 

  65. Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119(13):2991–3002. doi:10.1182/blood-2011−12–380113

    Article  PubMed  CAS  Google Scholar 

  66. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208(2):273–284. doi:10.1084/jem.20101643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Textoris J, Beaufils N, Quintana G, Ben Lassoued A, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M (2012) Hypoxia-inducible factor (HIF1alpha) gene expression in human shock states. Crit Care 16(4):R120. doi:10.1186/cc11414

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, Rojas M (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L131–L141. doi:00431.2006 [pii]

    Article  PubMed  CAS  Google Scholar 

  69. Yang L, Guo XG, Du CQ, Yang JX, Jiang DM, Li B, Zhou WJ, Zhang FR (2012) Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway. Inflammation 35(4):1242–1250. doi:10.1007/s10753-012-9434-9

    Article  PubMed  CAS  Google Scholar 

  70. Zhang P, Nelson S, Bagby GJ, Siggins R 2nd, Shellito JE, Welsh DA (2008) The lineage-c-Kit + Sca-1 + cell response to Escherichia coli bacteremia in Balb/c mice. Stem Cells 26(7):1778–1786. doi:10.1634/stemcells.2007−1027

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Kawiak .

Editor information

Editors and Affiliations

Conclusions and Therapeutic Perspectives

Conclusions and Therapeutic Perspectives

Although the investigations of the role of stem cells in the pathophysiology of sepsis and their potent therapeutic applications do not have a long record, there is an increasing body of evidence indicating the significance of these cells in sepsis. It should be highlighted that sepsis evokes extremely complex and overlapping responses which challenges the studies of the particular cell types. Direct effects of bacterial compounds, hypercytokinemia (also referred as cytokine storm), activation of complement cascade and coagulation systems, and release of damage-associated patterns from injured cells contribute to the septic milieu and change dynamically. Having appreciated the complexity of these interactions, one should carefully interpret the effects of single septic-related stimuli on the stem cells. The function of stem cells as guardians counteracting the deleterious effects of sepsis is unraveled, but the abovementioned evidence suggests such role for the hematopoietic, endothelial, and mesenchymal stem cells. Such role of endogenous stem cells may provide a new target of therapies enhancing their protective capacities. Moreover, the unique capacities of stem cells may become a basis for the transplantation of exogenous (either auto- or allogenic) cells or their derivatives (such as microvesicles). The encouraging trails with MSCs performed in animal models are likely to be soon transmitted to the clinical settings. First positive trials with exogenous EPCs in the endotoxemic mouse are also reported [21]. Adoptive transfer of murine CD34 + hematopoietic progenitor cells decreases mortality and improves late immune response by generation of competent macrophages and rebalancing the immune response [7]. Stimulation and mobilization of HSCs and EPCs by G-CSF in septic shock patients is also possible [60]. However, the introduction of successful stem-cell-based therapies in sepsis requires careful and profound understanding of their mechanisms of action under inflammatory conditions.

Acknowledgements

The authors would like to thank Zofia Herbich for her help in preparation of the figures. Supported by EU Structural Funds, “Innovative methods of stem cells applications in medicine,” Innovative Economy Operational Programme, POIG 01.02−00-109/09.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skirecki, T., Hoser, G., Kawiak, J. (2014). Stem Cells in Infection and Sepsis. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_15

Download citation

Publish with us

Policies and ethics