Skip to main content

Molecular Signature of Very Small Embryonic-like Stem Cells

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 795 Accesses

Abstract

Tissue and organ rejuvenation and senescence/aging are closely related to the function of stem cells. Thus, stem cells have been considered as guardians for the homeostasis of tissue/organ throughout life span. Recently, we identified a population of pluripotent Oct4+  very small embryonic/epiblast-like stem cells (VSELs) residing in the adult murine bone marrow (BM) and human cord blood (CB). VSELs can differentiate into cells from all three germ layers in vitro culture condition and in vivo tissue regeneration animal models. VSELs express the gene-expression and epigenetic profiling, which are similar to germ-line stem cells including (i) open/active chromatin structure in Oct4 promoter, (ii) parent-of-origin-specific reprogramming of genomic imprinting, (iii) deoxyribonucleic acid (DNA) demethylation in the promoter of germ-line lineage genes, and (iv) reactivate the X chromosome (in female pluripotent stem cells, PSCs). The unique epigenetic reprogramming in VSELs suggest that they could developmentally originate from the migratory primordial germ cells (PGCs) and the proliferation of VSELs are negatively controlled by epigenetic changes of some imprinted genes that regulate insulin/insulin-like growth-factor (Ins/Igf) signaling (Igf2, H19, Igf2R, and Rasgrf1). Since the chronic exposure to Ins/Igf signaling negatively correlates with longevity, we propose that Ins/Igf signaling mediated decrease in the number of VSELs could be a novel explanation of ageing. Therefore, VSELs could play a pivotal role in maintaining the integrity of adult tissues and these cells could provide a therapeutic alternative to stem cells isolated from embryos. Therefore, the understanding the precise molecular signature of VSELs such as reprogrammed genomic imprints could increase the regenerative power of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007) A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia 21(5):860–867

    PubMed  CAS  Google Scholar 

  2. Tam PPL, Loebel DAF (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8(5):368–381. doi:http://www.nature.com/nrg/journal/v8/n5/suppinfo/nrg2084_S1.html

    Article  PubMed  CAS  Google Scholar 

  3. Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646. doi:10.1242/dev.02787

    Article  PubMed  CAS  Google Scholar 

  4. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  PubMed  CAS  Google Scholar 

  5. Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195. doi:http://www.nature.com/nature/journal/v448/n7150/suppinfo/nature05950_S1.html

    Article  PubMed  CAS  Google Scholar 

  6. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  PubMed  CAS  Google Scholar 

  7. Hayashi K, de Sousa LSMC, Surani MA (2007) Germ Cell Specification in Mice. Science 316(5823):394–396. doi:10.1126/science.1137545

    Article  PubMed  CAS  Google Scholar 

  8. Matsui Y, Zsebo K, Hogan BLM (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70(5):841–847

    Article  PubMed  CAS  Google Scholar 

  9. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  11. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324. doi:http://www.nature.com/nature/journal/v448/n7151/suppinfo/nature05944_S1.html

    Article  PubMed  CAS  Google Scholar 

  12. Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42(1):733–772. doi:10.1146/annurev.genet.42.110807.091711

    Article  PubMed  CAS  Google Scholar 

  13. Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7(3):329–342. doi:http://dx.doi.org/10.1016/j.stem.2010.06.024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7(7):540–546

    Article  PubMed  CAS  Google Scholar 

  15. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin D-M (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81(3):153–161. doi:http://dx.doi.org/10.1016/j.diff.2011.01.006

    Article  PubMed  CAS  Google Scholar 

  16. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8(5):532–538. doi:http://www.nature.com/ncb/journal/v8/n5/suppinfo/ncb1403_S1.html

    Article  PubMed  CAS  Google Scholar 

  17. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353. doi:http://www.nature.com/nature/journal/v441/n7091/suppinfo/nature04733_S1.html

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  PubMed  CAS  Google Scholar 

  19. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435. doi:http://www.nature.com/ncb/journal/v9/n12/suppinfo/ncb1663_S1.html

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi K, Surani MA (2009) Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell 4(6):493–498. doi:http://dx.doi.org/10.1016/j.stem.2009.05.007

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi K, Lopes SMCdS, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3(4):391–401

    Article  PubMed  CAS  Google Scholar 

  22. Wylie C (1999) Germ cells. Cell 96(2):165–174

    Article  PubMed  CAS  Google Scholar 

  23. Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134(14):2627–2638. doi:10.1242/dev.005611

    Article  PubMed  CAS  Google Scholar 

  24. Maatouk DM, Kellam LD, Mann MRW, Lei H, Li E, Bartolomei MS, Resnick JL (2006) DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133(17):3411–3418. doi:10.1242/dev.02500

    Article  PubMed  CAS  Google Scholar 

  25. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  PubMed  CAS  Google Scholar 

  26. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(14):2971–2981. doi:10.1242/jcs.01103

    Article  PubMed  Google Scholar 

  27. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103(5):1647–1652. doi:10.1182/blood-2003-06-1967

    Article  PubMed  CAS  Google Scholar 

  28. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardo R, Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi O, Schneider C, Beltrami CA (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110(9):3438–3446. doi:10.1182/blood-2006-11-055566

    Article  PubMed  CAS  Google Scholar 

  29. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+stem cells identified in adult bone marrow. Leukemia 20(5):857–869

    Article  PubMed  CAS  Google Scholar 

  30. Zuba-Surma EK, Kucia M, Wu W, Klich I, Jr. JWL, Ratajczak J, Ratajczak MZ (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry Part A 73A (12):1116–1127

    Article  CAS  Google Scholar 

  31. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2006) Morphological and molecular characterization of novel population of CXCR4 + SSEA-4 + Oct-4 + very small embryonic-like cells purified from human cord blood-preliminary report. Leukemia 21(2):297–303

    Article  PubMed  Google Scholar 

  32. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak M (2008) Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res 331(1):125–134. doi:10.1007/s00441-007-0485-4

    Article  PubMed  CAS  Google Scholar 

  33. Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A, Wang J, Patel LR, Havens AM, Kucia M, Ratajczak MZ, Krebsbach PH (2010) Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 19 (10):1557–1570. doi:10.1089/scd.2009.0445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, SanganalMath SK, Abdel-Latif A, Hunt G, Vincent RJ, Taher H, Reed NJ, Ratajczak MZ, Bolli R (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26(6):1646–1655. doi:10.1634/stemcells.2007-0715

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, Ratajczak MZ (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 39(2):225–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N, Kucia M, Laughlin MJ, Ratajczak MZ (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25(8):1278–1285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26(8):2083–2092. doi:10.1634/stemcells.2007-0922

    Article  PubMed  CAS  Google Scholar 

  38. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J, Halasa M, Kr M, Kazmierski M, Buszman P, Ochala A, Ratajczak J, Machalinski B, Ratajczak MZ (2009) Mobilization of bone marrow-derived oct-4 + ssea-4 + very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53(1):1–9

    Article  PubMed  CAS  Google Scholar 

  39. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M, Karbicka A, Nowik M, Nowacki P, Ratajczak MZ, Machalinski B (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40(4):1237–1244. doi:10.1161/strokeaha.108.535062

    Article  PubMed  CAS  Google Scholar 

  40. Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, Kucia M (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4+  very small embryonic-like stem cells. Leukemia 23(11):2042–2051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1(4):403–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, K?ler G (2007) Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1(4):364–366

    Article  PubMed  CAS  Google Scholar 

  43. Atlasi Y, Mowla SJ, Ziaee SAM, Gokhale PJ, Andrews PW (2008) OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26(12):3068-3074. doi:10.1634/stemcells.2008- 0530

    Article  PubMed  CAS  Google Scholar 

  44. Guo C-l, Liu L, Jia Y-d, Zhao X-y, Zhou Q, Wang L (2012) A novel variant of Oct3/4 gene in mouse embryonic stem cells. Stem Cell Res 9(2):69–76. doi:http://www.nature.com/ncb/journal/v8/n5/suppinfo/ncb1403_S1.html

    Article  PubMed  CAS  Google Scholar 

  45. Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15(2):163–176

    Article  PubMed  CAS  Google Scholar 

  46. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38(7):835–841

    Article  PubMed  Google Scholar 

  47. Shin D-M, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak M (2010) Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells 29(6):533–538. doi:10.1007/s10059-010-0081-4

    Article  PubMed  CAS  Google Scholar 

  48. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24(8):1450–1461. doi:http://www.nature.com/leu/journal/v24/n8/suppinfo/leu2010121s1.html

    Article  PubMed  CAS  Google Scholar 

  49. Simon JA, Kingston RE (2009) Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10(10):697–708

    PubMed  CAS  Google Scholar 

  50. Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8(1):9–22

    Article  PubMed  CAS  Google Scholar 

  51. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38(1):413–443. doi:10.1146/annurev.genet.38.072902.091907

    Article  PubMed  CAS  Google Scholar 

  52. Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ, Kucia M (2012) Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 21 (10):1639–1652. doi:10.1089/scd.2011.0389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. De Felici M, McLaren A (1983) In vitro culture of mouse primordial germ cells. Exp Cell Res 144(2):417–427

    Article  PubMed  CAS  Google Scholar 

  54. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32

    Article  PubMed  CAS  Google Scholar 

  55. Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14(2):188–195

    Article  PubMed  CAS  Google Scholar 

  56. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci U S A 100 (21):12207–12212. doi:10.1073/pnas.2035119100, 2035119100[pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A (2010) A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging 2 (11):875–883. 100231 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8(9):681–691

    Article  PubMed  CAS  Google Scholar 

  59. Piper MDW, Bartke A (2008) Diet and aging. Cell Metab 8(2):99–104

    Article  PubMed  CAS  Google Scholar 

  60. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2(3):739–752

    Article  PubMed  CAS  Google Scholar 

  61. Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M (2006) Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 75(5):705–716. doi:10.1095/biolreprod.106.053686

    Article  PubMed  CAS  Google Scholar 

  62. Zuba-Surma EK, Kucia M, Rui L, Shin D-M, Wojakowski W, Ratajczak J, Ratajczak MZ (2009) Fetal liver very small embryonic/epiblast like stem cells follow developmental migratory pathway of hematopoietic stem cells. Ann N Y Acad Sci 1176 (Hematopoietic Stem Cells VII):205–218

    Article  PubMed  Google Scholar 

  63. Rich IN (1995) Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood 86(2):463–472

    PubMed  CAS  Google Scholar 

  64. Ohtaka T, Matsui Y, Obinata M (1999) Hematopoietic development of primordial germ cell-derived mouse embryonic germ cells in culture. Biochem Biophys Res Commun 260(2):475–482

    Article  PubMed  CAS  Google Scholar 

  65. Kritzenberger M, Wrobel K-H (2004) Histochemical in situ identification of bovine embryonic blood cells reveals differences to the adult haematopoietic system and suggests a close relationship between haematopoietic stem cells and primordial germ cells. Histochem Cell Biol 121(4):273–289

    Article  PubMed  CAS  Google Scholar 

  66. Saito A, Watanabe K, Kusakabe T, Abe M, Suzuki T (1998) Mediastinal mature teratoma with coexistence of angiosarcoma, granulocytic sarcoma and a hematopoietic region in the tumor: a rare case of association between hematological malignancy and mediastinal germ cell tumor. Pathol Int 48(9):749–753

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Myung Shin PhD .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Several attempts have been made in the past few years to purify a population of PSCs from adult tissues. The very primitive VSELs in adult tissues could function as precursor for monopotent TCSCs. It is very likely that these cells play a physiological role in rejuvenation of a pool of TCSCs under steady state conditions. Molecular signature of VSELs demonstrates that they VSELs exhibit the common features for pluripotency, (i) open chromatin structure in the promoters of PSC-specific TFs (Oct4 and Nanog), (ii) BD domain in the promoters of developmental master regulator TFs, and (iii) partial reactivation of Xi. As respect to gene expression and epigenetic programs of germ-line markers, VSELs share several molecular signatures with epiblast and migrating PGCs, suggesting that VSELs developmentally originate from epiblast-derived migrating PGCs. Based on the similarity to PGCs, the capacity for proliferation and differentiation of VSELs is orchestrated by DNA methylation status of some of the developmentally crucial imprinted genes (e.g., H19, Igf2, Igf2R, p57KIP2, and Rasgrf1). The progress loss of the proliferation-repressive epigenetic marks in VSELs results in the increased sensitivity to Ins/Igf signaling and concomitantly depletion of primitive VSELs population during ageing process. VSELs could function as a reserve pool of primitive stem by regeneration into several tissue residing TCSCs (e.g., MSCs, HSCs, cardiac SCs) in response to tissue/organ injury. Thus, VSELs isolated from adult tissues are safe and ethically noncontroversial source of SCs as an alternative to embryonic types of PSCs for regenerative medicine. To successfully employ VSELs in the realm of regenerative medicine, it is very important to establish experimental protocols for unleashing the regenerative potential of VSELs like reprogramming of their growth repressive genomic imprints status into regular somatic pattern and the study about precise molecular signature of VSELs could advance the development of ex vivo expansion protocol for these SCs.

Conflicts Of Interest Statement

The authors declare that they have no competing financial interests.

Acknowledgments

This work was supported by a grant from the Asian Institute for Life Sciences, Seoul, Korea (2014–528) and a grant from the Korean Health Technology R & D Project, Ministry of Health & Welfare, Republic of Korea (A120301) to DMS.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kang, H., Lim, J., Heo, J., Jeong, J., Kim, Y., Shin, DM. (2014). Molecular Signature of Very Small Embryonic-like Stem Cells. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_12

Download citation

Publish with us

Policies and ethics