Skip to main content

Stem Cell Therapies in Neonatology

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 783 Accesses

Abstract

The frequency of preterm birth has risen noticeably over the last few years. Premature infants of low body weight reveal a high risk of complications, including brain injury, retinopathy of prematurity, neonatal respiratory distress syndrome, bronchopulmonary dysplasia, necrotizing enterocolitis, anemia, resulting in psychomotor disability. Preterm delivery is therefore one of the most important factors of neonatal mortality and morbidity throughout the world. Hence, there is growing interest in the identification of factors that may facilitate prevention of premature birth complications. Efficient prevention and treatment of these conditions remains a priority in medicine. This chapter introduces the clinical problem of premature birth, describes various stem cell populations in umbilical cord blood and their potential association with development of premature birth complications. It reviews experimental studies aimed on protection of physiological preterm infant development and describes novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadhwa PD, Entringer S, Buss C, Lu MC (2011) The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol 38:351–384

    Article  PubMed  PubMed Central  Google Scholar 

  2. Muglia LJ, Katz M (2010) The enigma of spontaneous preterm birth. N Engl J Med 362:529–535

    Article  PubMed  CAS  Google Scholar 

  3. Spong CY, Mercer BM, D’Alton M, Kilpatrick S, Blackwell S, Saade G (2011) Timing of indicated late-preterm and early-term birth. Obstet Gynecol 118:323–333

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scafidi J, Fagel DM, Ment LR, Vaccarino FM (2009) Modeling premature brain injury and recovery. Int J Dev Neurosci 27:863–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kotowski MJ, Safranow K, Kawa MP, Lewandowska J, Dziedziejko V, Paczkowska E, Czajka R, Celewicz Z, Rudnicki J, Machalinski B (2012) Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns. BMC Pediatr 12:148

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCrea HJ, Ment LR (2008) The diagnosis, management and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol 35:777–792

    Article  PubMed  PubMed Central  Google Scholar 

  7. Machalińska A, Modrzejewska M, Kotowski M, Dziedziejko V, Kucia M, Kawa M, Safranow K, Baśkiewicz-Masiuk M, Modrzejewska A, Karczewicz D, Rudnicki J, Machaliński B (2010) Circulating stem cell populations in preterm infants: implications for the development of retinopathy of prematurity. Arch Ophtalmol 128:1311–1319

    Article  Google Scholar 

  8. Lee J, Dammann O (2012) Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med 17:26–29

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Stahl A, Hellstrom A, Smith LE (2011) Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr 23:173–178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. McFetridge L, McMorrow A, Morrison PJ, Shields MD (2009) Surfactant metabolism dysfunction and childhood interstitial lung disease (chILD). Ulster Med J 78:7–9

    PubMed  PubMed Central  Google Scholar 

  11. Agrons GA, Courtney SE, Stocker JT, Markowitz RI (2005) From the archives of the AFIP: lung disease in premature neonates: radiologic-pathologic correlation. Radiographics 25:1047–1073

    Article  PubMed  Google Scholar 

  12. Northway WH Jr, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. N Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  13. Reyburn B, Martin RJ, Prakash YS, MacFarlane PM (2012) Mechanisms of injury to the preterm lung and airway: implications for long-term pulmonary outcome. Neonatology 101:345–352

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhandari A, Bhandari V (2009) Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics 123:1562–1573

    Article  PubMed  Google Scholar 

  15. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729

    Article  PubMed  CAS  Google Scholar 

  16. Abman SH, Mourani PM, Sontag M (2008) Bronchopulmonary dysplasia: a genetic disease. Pediatrics 122:658–659

    Article  PubMed  Google Scholar 

  17. Baraldi E, Filippone M (2007) Chronic lung disease after premature birth. N Engl J Med 357:1946–1955

    Article  PubMed  CAS  Google Scholar 

  18. Underwood MA (2012) Paneth cells and necrotizing enterocolitis. Gut Microbes 3:562–565

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gephart SM, McGrath JM, Effken JA, Halpern MD (2012) Necrotizing enterocolitis risk: state of the science. Adv Neonatal Care 12:77–87

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pacifici GM, Allegaert K (2012) Clinical pharmacokinetics of vancomycin in the neonate: a review. Clinics (Sao Paulo) 67:831–837

    Article  Google Scholar 

  21. Tripathi N, Cotten CM, Smith PB (2012) Antibiotic use and misuse in the neonatal intensive care unit. Clin Perinatol 39:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  22. Strauss RG (2010) Anaemia of prematurity: pathophysiology and treatment. Blood Rev 24:221–225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Gluckman E, Rocha V (2009) Cord blood transplantation: state of the art. Haematologica 94:451–454

    Article  PubMed  PubMed Central  Google Scholar 

  24. Opie TM, Shields LE, Andrews RG (1998) Cell-surface antigen expression in early and term gestation fetal hematopoietic progenitor cells. Stem Cells 16:343–348

    Article  PubMed  CAS  Google Scholar 

  25. Ali H, Bahbahani H (2010) Umbilical cord blood stem cells—potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp (Wars) 70:316–324

    Google Scholar 

  26. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4(+) SSEA-4(+) Oct-4(+) very small embryonic-like cells purified from human cord blood—preliminary report. Leukemia 21:297–303

    Article  PubMed  CAS  Google Scholar 

  27. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  28. Hunting CB, Noort WA, Zwaginga JJ (2005) Circulating endothelial (progenitor) cells reflect the state of the endothelium: vascular injury, repair and neovascularization. Vox Sang 88:1–9

    Article  PubMed  CAS  Google Scholar 

  29. Sipos PI, Crocker IP, Hubel CA, Baker PN (2010) Endothelial progenitor cells: their potential in the placental vasculature and related complications. Placenta 31:1–10

    Article  PubMed  CAS  Google Scholar 

  30. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 9:2752–2760

    Article  Google Scholar 

  31. Safranow K, Kotowski M, Lewandowska J, Machalińska A, Dziedziejko V, Czajka R, Celewicz Z, Rudnicki J, Machaliński B (2012) Circulating endothelial progenitor cells in premature infants: is there an association with premature birth complications? J Perinat Med 40:455–462

    Article  PubMed  Google Scholar 

  32. Haase R, Körholz D, Herting E, Sorg RV, Müller LP, Göbel U (2012) Rationale for regenerative treatment in neonatology. Klin Padiatr 224:230–232

    PubMed  CAS  Google Scholar 

  33. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010a) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68:419–422

    Article  Google Scholar 

  34. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  PubMed  CAS  Google Scholar 

  35. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104

    Article  PubMed  CAS  Google Scholar 

  36. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010b) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24:387–393

    Article  CAS  Google Scholar 

  37. Lee JA, Kim BI, Jo CH, Choi CW, Kim EK, Kim HS, Yoon KS, Choi JH (2010) Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res 67:42–46

    Article  PubMed  CAS  Google Scholar 

  38. Wang F, Maed N, Yasuhara T, Kameda M, Tsuru E, Yamashit T, Shen Y, Tsud M, Date I, Sagara Y (2012) The therapeutic potential of human umbilical cord blood transplantation for neonatal hypoxic-ischemic brain injury and ischemic stroke. Acta Med Okayama 66:429–434

    PubMed  CAS  Google Scholar 

  39. Sutsko RP, Young KC, Ribeiro A, Torres E, Rodriguez M, Hehre D, Devia C, McNiece I, Suguihara C (2013) Long-term reparative effects of mesenchymal stem celltherapy following neonatal hyperoxia-induced lung injury. Pediatr Res 73:46–53

    Article  PubMed  CAS  Google Scholar 

  40. Tian Z, Li Y, Ji P, Zhao S, Cheng H (2013) Mesenchymal stem cells protects hyperoxia-induced lung injury in newborn rats via inhibiting receptor for advanced glycation end-products/nuclear factor κB signaling. Exp Biol Med (Maywood) 238:242–247

    Article  CAS  Google Scholar 

  41. Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I, Helvacioglu F, Haltas H, Koseoglu B, Tatli MM (2011) Mesenchymal stem celltherapy in necrotizing enterocolitis: a rat study. Pediatr Res 70:489–494

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Machaliński .

Editor information

Editors and Affiliations

Conclusions and Future Perspectives

Conclusions and Future Perspectives

The clinical need for therapeutic approach aimed to alleviate symptoms and complications of premature birth is growing. Our preliminary study that included a small number of preterm neonates does not authorize us to draw a substantially clear conclusion. Yet, many hurdles remain to be overcome before safe translation of UCB-based therapies in newborns can be achieved. Nevertheless, promising initial experience led us to believe that further clinical trial, with longer follow-up and well-selected endpoints would help us to fully determine safety and effectiveness of using autogenic UCB in the first days of life for decreasing the risk of systemic complications developing in prematurely born infants.

Although cell-based therapy is relatively novel approach to the treatment of prematurity complications, our encouraging initial experience together with new data derived from novel animal studies widen the horizons for this novel strategy. Having accepted the limitations of our current knowledge, it seems appropriate to state that SC therapies in neonatology hold exceedingly great promise.

Acknowledgments

The work was supported by European Union structural funds—Innovative Economy Operational Program POIG.01.01.02-00-109/09-00.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Machaliński, B. (2014). Stem Cell Therapies in Neonatology. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_10

Download citation

Publish with us

Policies and ethics