Skip to main content

Estimating Abundance from Mark-Recapture Data

  • Chapter
  • First Online:
Modelling Population Dynamics

Abstract

In terms of modelling population dynamics, the mark-recapture literature has in recent years been dominated by methods for estimating survival, as described in Chap. 7. In this chapter, we consider open-population mark-recapture methods for estimating abundance, survival and births. We first summarise conventional methods (Seber 1973, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alho, J. M. (1990). Logistic regression in capture-recapture models. Biometrics, 50, 494–500.

    MathSciNet  Google Scholar 

  • Bishop, J. R. B. (2009). Embedding population dynamics in mark-recapture models. (Ph.D. thesis, University of St Andrews).

    Google Scholar 

  • Bonner, S. J., Morgan, B. J. T., & King, R. (2010). Continuous covariates in mark-recapture-recovery analysis: A comparison of methods. Biometrics, 66, 1256–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002). Estimating animal abundance: Closed populations. London: Springer.

    Book  Google Scholar 

  • Buckland, S. T. (1980). A modified analysis of the Jolly-Seber capture-recapture model. Biometrics, 36, 419–435.

    Article  Google Scholar 

  • Buckland, S. T., Newman, K. B., Thomas, L., & Koesters, N. B. (2004). State-space models for the dynamics of wild animal populations. Ecological Modelling, 171, 157–175.

    Article  Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., & Tavecchia, G. (2008). A new method for analysing discrete life-history data with missing covariate values. Journal of the Royal Statistical Society B, 70, 445–460.

    Article  MATH  MathSciNet  Google Scholar 

  • Coull, B. A., & Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture-recapture studies. Biometrics, 55, 294–301.

    Article  MATH  Google Scholar 

  • Crosbie, S. F., & Manly, B. F. J. (1985). Parsimonious modelling of capture-mark-recapture studies. Biometrics, 41, 385–398.

    Article  MATH  Google Scholar 

  • Huggins, R. M. (1989). On the statistical analysis of capture experiments. Biometrika, 76, 133–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration: Stochastic model. Biometrika, 52, 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  • Jolly, G. M. (1982). Mark-recapture models with parameters constant in time. Biometrics, 38, 301–321.

    Article  MATH  MathSciNet  Google Scholar 

  • Langrock, R., & King, R. (2013). Maximum likelihood estimation of mark-recapture-recovery models in the presence of continuous covariates. Annals of Applied Statistics, 7, 1709–1732.

    Article  MATH  MathSciNet  Google Scholar 

  • Link, W. A., & Barker, R. J. (2005). Modeling association among demographic parameters in analysis of open-population capture-recapture data. Biometrics, 61, 46–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Morgan, B. J. T., Catchpole, E. A., & Coulson, T. (2004). Conditional methodology for individual case history data. Applied Statistics, 53, 123–131.

    MATH  MathSciNet  Google Scholar 

  • Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture. Journal of Wildlife Management, 46, 752–757.

    Article  Google Scholar 

  • Pollock, K. H. (2002). The use of auxiliary variables in capture-recapture modelling: An overview. Journal of Applied Statistics, 29, 85–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Schofield, M. R., & Barker, R. J. (2008). A unified capture-recapture framework. Journal of Agricultural, Biological, and Environmental Statistics, 13, 458–477.

    Article  MathSciNet  Google Scholar 

  • Schofield, M. R., Barker, R. J., & MacKenzie, D. I. (2009). Flexible hierarchical mark-recapture modeling for open populations using WinBUGS. Environmental and Ecological Statistics, 16, 369–387.

    Article  MathSciNet  Google Scholar 

  • Schwarz, C. J., & Arnason, A. N. (1996). A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics, 52, 860–873.

    Article  MATH  MathSciNet  Google Scholar 

  • Seber, G. A. F. (1965). A note on the multiple recapture census. Biometrika, 52, 249–259.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newman, K.B. et al. (2014). Estimating Abundance from Mark-Recapture Data. In: Modelling Population Dynamics. Methods in Statistical Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0977-3_8

Download citation

Publish with us

Policies and ethics