Skip to main content

Model Formulation and Evaluation

  • Chapter
  • First Online:
  • 3299 Accesses

Part of the book series: Methods in Statistical Ecology ((MISE))

Abstract

The previous two chapters have presented the state-space model as a general framework for modelling population dynamics and discussed alternative ways of fitting SSMs to data. In this chapter, we address model formulation and model evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See, for example, http://www.kent.ac.uk/ims/personal/djc24/parameterredundancy.htm.

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Anscombe, F.J. (1973). Graphs in Statistical Analysis. American Statistician, 27(1): 17–21

    Google Scholar 

  • Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Besbeas, P., Freeman, S. N., Morgan, B. J. T., & Catchpole, E. A. (2002). Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58, 540–547.

    Article  MATH  MathSciNet  Google Scholar 

  • Brooks, S. P., Catchpole, E. A., Morgan, B. J. T., & Barry, S. C. (2000). On the Bayesian analysis of ring-recovery data. Biometrics, 56, 951–956.

    Article  Google Scholar 

  • Brooks, S. P., Friel, N., & King, R. (2003). Classical model selection via simulated annealing. Journal of the Royal Statistical Society B, 65, 503–520.

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, D. L. (2010). Climate modelling for animal survival. (Ph.D. thesis, University of Kent).

    Google Scholar 

  • Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics, 53, 603–618.

    Article  MATH  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: A practical information-theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • Catchpole, E. A., Freeman, S. N., & Morgan, B. J. T. (1996). Steps to parameter redundancy in age-dependent recovery models. Journal of the Royal Statistical Society B, 58, 763–774.

    MATH  MathSciNet  Google Scholar 

  • Catchpole. E. A., Freeman, S. N., Morgan, B. J. T., & Harris, M. P. (1998). Integrated recovery/recapture data analysis. Biometrics, 54(1), 33–46.

    Google Scholar 

  • Catchpole, E. A., Kgosi, P. M., & Morgan, B. J. T. (2001). On the near-singularity of models for animal recovery data. Biometrics, 57, 720–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Catchpole, E. A., & Morgan, B. J. T. (1991). A note on Seber’s model for ring-recovery data. Biometrika, 78, 917–919.

    Article  MathSciNet  Google Scholar 

  • Catchpole, E. A., & Morgan, B. J. T. (1996). Model selection in ring-recovery models using score tests. Biometrics, 52, 664–672.

    Article  MATH  Google Scholar 

  • Catchpole, E. A., & Morgan, B. J. T. (1997). Detecting parameter redundancy. Biometrika, 84, 187–196.

    Article  MATH  MathSciNet  Google Scholar 

  • Catchpole, E. A., & Morgan, B. J. T. (2001). Deficiency of parameter-redundant models. Biometrika, 88, 593–598.

    Article  MATH  MathSciNet  Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., & Freeman, S. N. (1998). Estimation in parameter redundant models. Biometrika, 85, 462–468.

    Article  MATH  MathSciNet  Google Scholar 

  • Celeux, G., Forbes, C. P., Robert, C. P., & Titterington, D. M. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1, 651–674.

    Article  MathSciNet  Google Scholar 

  • Choquet, R., & Cole, D. J. (2012). A hybrid symbolic-numerical method for determining model structure. Mathematical Biosciences, 236, 117–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole, D. J. (2012). Determining parameter redundancy of multi-state mark-recapture models for sea birds. Journal of Ornithology, 152(Suppl 2), 305–315.

    Article  Google Scholar 

  • Cole, D. J., & McCrea, R. S. (2012). Parameter redundancy in discrete state-space and integrated models. (Technical Report UKC/SMSAS/12/012). University of Kent.

    Google Scholar 

  • Cole, D. J., & Morgan, B. J. T. (2010a). A note on determining parameter redundancy in age-dependent tag return models for estimating fishing mortality, natural mortality and selectivity. Journal of Agricultural, Biological, and Environmental Statistics, 15, 431–434.

    Article  MathSciNet  Google Scholar 

  • Cole, D. J., & Morgan, B. J. T. (2010b). Parameter redundancy with covariates. Biometrika, 97, 1002–1005.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole, D. J., Morgan, B. J. T., Catchpole, E. A., & Hubbard, B.A. (2012). Parameter redundancy in mark-recovery models. Biometrical Journal, 54, 507–523.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole, D. J., Morgan, B. J. T., & Titterington, D. M. (2010). Determining the parametric structure of non-linear models. Mathematical Biosciences, 228, 16–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Cormack, R. M. (1964). Estimates of survival from the sighting of marked animals. Biometrika, 51, 429–438.

    Article  MATH  Google Scholar 

  • de Jong, P. (1988). A cross-validation filter for time series models. Biometrika, 75, 594–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods, 2nd Edition. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Edwards, D., & Havránek, T. (1985). A fast procedure for model search in multidimensional contingency tables. Biometrika, 72, 339–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Engle, R., & Watson, M. (1981). A one-factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association, 76, 774–781.

    Article  Google Scholar 

  • Evans, N. D., & Chappell, M. J. (2000). Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. Mathematical Biosciences, 168, 137–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S. (1996). Recursive residuals and model diagnostics for normal and non-normal state space models. Environmental and Ecological Statistics, 3, 291–309.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D.B. (2003). Bayesian data analysis. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Gelman, A., & Meng, X. (1996). Model checking and model improvement. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 189–201). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Gimenez, O., Morgan, B. J. T., & Brooks, S. P. (2009b). Weak identifiability in models for mark-recapture-recovery data. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modelling demographic processes in marked populations. Environmental and ecological statistics (Vol. 3, pp. 1057–1070). Springer, New York.

    Google Scholar 

  • Gimenez, O., Viallefont, A., Choquet, R., Catchpole, E. A., & Morgan, B. J. T. (2004). Methods for investigating parameter redundancy. Animal Biodiversity and Conservation, 27, 561–572.

    Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Hart, J. D. (1994). Automated kernel smoothing of dependent data by using time series cross-validation. Journal of the Royal Statistics Society B, 56, 529–542.

    MATH  Google Scholar 

  • Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Hubbard, B. A., Cole, D. J., & Morgan, B. J. T. (2014). Parameter redundancy in capture-recapture-recovery models. Statistical Methodology, 17, 17–29.

    Article  MathSciNet  Google Scholar 

  • Hunter, C. M., & Caswell, H. (2009). Rank and redundancy of multistate mark-recapture models for seabird populations with unobservable states. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in marked populations. Ecological and environmental statistics series (Vol. 3, pp. 797–826). Springer, New York.

    Google Scholar 

  • Jiang, H., Pollock, K. H., Brownie, C., Hightower, J. E., Hoenig, J. M., & Hearn, W. S. (2007). Age-dependent tag return models for estimating fishing mortality, natural mortality and selectivity. Journal of Agricultural, Biological, and Environmental Statistics, 12,177–194.

    Article  MathSciNet  Google Scholar 

  • Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration: Stochastic model. Biometrika, 52, 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  MATH  Google Scholar 

  • King, R., & Brooks, S. P. (2002). Bayesian model discrimination for multiple strata capture-recapture data. Biometrika, 89, 785–806.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., & Brooks, S. P. (2004). A classical study of catch-effort models for Hector’s dolphins. Journal of the American Statistical Association, 99, 325–333.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., Brooks, S. P., Mazzetta, C., Freeman, S. N., & Morgan, B. J. T. (2008). Identifying and diagnosing population declines: A Bayesian assessment of Lapwings in the UK. Applied Statistics, 57, 609–632.

    MathSciNet  Google Scholar 

  • King, R., Brooks, S. P., Morgan, B. J. T., & Coulson, T. (2006). Factors influencing Soay sheep survival: A Bayesian analysis. Biometrics, 62, 211–220.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., Morgan, B. J. T., Gimenez, O., & Brooks, S. P. (2009). Bayesian analysis for population ecology. London: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34, 975–986.

    Article  MathSciNet  Google Scholar 

  • Knape, J., Besbeas, P., de Valpine, P. (2013). Using uncertainty estimates in analysis of population time series. Ecology, 94, 2097–2107.

    Article  Google Scholar 

  • McCrea, R. S., & Morgan, B. J. T. (2011). Multistate mark-recapture model selection using score tests. Biometrics, 67, 234–241.

    Article  MATH  MathSciNet  Google Scholar 

  • Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics, 65, 962–969.

    Article  MATH  MathSciNet  Google Scholar 

  • Morgan, B. J. T. (2009). Applied stochastic modelling (2nd ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Morgan, B. J. T., Palmer, K. J., & Ridout, M. S. (2007). Negative score test statistic. American Statistician, 61, 285–288.

    Article  MathSciNet  Google Scholar 

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (4th ed.). Boston: McGraw-Hill.

    Google Scholar 

  • Pohjanpalo, H. (1978). System identifiability based on the power series of the solution. Mathematical Biosciences, 41, 21–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning parameters with application to problems of estimation. Proceedings of the Cambridge Philosophical Society, 44, 50–57.

    Google Scholar 

  • Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Seber, G. A. F. (1965). A note on the multiple recapture census. Biometrika, 52, 249–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Seber, G. A. F. (1971). Estimating age-specific survival rates from bird-band returns when the reporting rate is constant. Biometrika, 58, 491–497.

    Article  MATH  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van der Linde, A. (2002). Bayesian measures of complexity and fit (with discussion). Journal of the Royal Statistical Society B, 64, 583–616.

    Article  MATH  Google Scholar 

  • Starfield, A. M., & Bleloch, A. L. (1991). Building models for conservation and wildlife management (2nd ed.). Edina: The Burgess Press.

    Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society B, 58, 267–288.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newman, K.B. et al. (2014). Model Formulation and Evaluation. In: Modelling Population Dynamics. Methods in Statistical Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0977-3_5

Download citation

Publish with us

Policies and ethics