Skip to main content

Microglial Biology in Neuroinflammatory Disease: Pharmaco-industrial Approach to Target Validation

  • Chapter
  • First Online:
Pathological Potential of Neuroglia

Abstract

Profound changes continue shaping scientific and business strategies in the pharmaceutical industry. Up until very recently, academic centers and corporations worked somewhat in isolation. However, over the last few years, two specific changes started to change this situation. On one hand, academic organizations became more engaged in operations previously conducted mainly in the industry, such as actual drug design and high-throughput drug screening. Capabilities were enhanced, both human and technical, and consolidation of available “know-how” led to the establishment of several academic centers capable of influencing and making key contributions to early drug discovery research. Simultaneously, the pharmaceutical industry recognized the need to enhance their sources of innovation and engage in hitherto mainly unexplored areas of research, such as neuroinflammation. In the process, previously insular organizations became more open to collaborating, exchanging information and building knowledge with external partners. Challenges remain to maximize the productivity of these interactions, and to benefit the collaborating partners, and ultimately society, by boosting the success of drug discovery. Developing a common language to communicate respective views is a key step towards enabling the partners to learn from each other and work together. In recent years our company has established a variety of successful collaborations with external partners. This chapter summarizes at a high level some of our current research processes, the learnings from our interactions with academic partners and our assessment of how to build strong academic-industry research partnerships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10(2):87–87

    Article  PubMed  CAS  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. doi:10.1021/jm901137j

    Article  PubMed  CAS  Google Scholar 

  • Bains W (2004) Failure rates in drug discovery and development: will we ever get any better. Drug Discov World Fall 2004:9–18

    Google Scholar 

  • Becker RE, Greig NH (2010) Lost in translation: neuropsychiatric drug development. Sci Transl Med 2(61):61rv66. doi:10.1126/scitranslmed.3000446

    Article  Google Scholar 

  • Begley CG (2013) Reproducibility: six red flags for suspect work. Nature 497(7450):433–434. doi:10.1038/497433a

    Article  PubMed  CAS  Google Scholar 

  • Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483(7391):531–533

    Article  PubMed  CAS  Google Scholar 

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169. doi:10.1016/j.neuropharm.2012.03.022

    Article  PubMed  CAS  Google Scholar 

  • Bunnage ME, Chekler ELP, Jones LH (2013) Target validation using chemical probes. Nat Chem Biol 9(4):195–199

    Article  PubMed  CAS  Google Scholar 

  • Chadwick AT, Segall MD (2010) Overcoming psychological barriers to good discovery decisions. Drug Discov Today 15(13–14):561–569. doi:http://dx.doi.org/10.1016/j.drudis.2010.05.007

    Article  PubMed  Google Scholar 

  • Davis BJ, Erlanson DA (2013) Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett 23(10):2844–2852. doi:10.1016/j.bmcl.2013.03.028

    Article  PubMed  CAS  Google Scholar 

  • Dzirasa K, Covington HE (2012) Increasing the validity of experimental models for depression. Ann N Y Acad Sci 1265(1):36–45. doi:10.1111/j.1749-6632.2012.06669.x

    Article  PubMed  Google Scholar 

  • Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013:11. doi:10.1155/2013/541259

    Article  Google Scholar 

  • Fineberg NA, Chamberlain SR, Hollander E, Boulougouris V, Robbins TW (2011) Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 164(4):1044–1061. doi:10.1111/j.1476-5381.2011.01422.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6(3):159–161

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsson J, Green AR, Van der Graaf PH (2010) Optimising in vivo pharmacology studies-practical PKPD considerations. J Pharmacol Toxicol Methods 61(2):146–156. doi:http://dx.doi.org/10.1016/j.vascn.2010.02.002

    Article  PubMed  CAS  Google Scholar 

  • Gandy S, Heppner FL (2013) Microglia as dynamic and essential components of the amyloid hypothesis. Neuron 78(4):575–577. doi:http://dx.doi.org/10.1016/j.neuron.2013.05.007

    Article  PubMed  CAS  Google Scholar 

  • Garden G, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1(2):127–137. doi:10.1007/s11481-006-9015-5

    Article  PubMed  Google Scholar 

  • Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10(3):197–208. doi:10.1038/nrd3367

    Article  PubMed  CAS  Google Scholar 

  • Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci 100(7):4078–4083. doi:10.1073/pnas.0737556100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grimwood S, Hartig PR (2009) Target site occupancy: emerging generalizations from clinical and preclinical studies. Pharmacol Ther 122(3):281–301. doi:10.1016/j.pharmthera.2009.03.002

    Article  PubMed  CAS  Google Scholar 

  • Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:http://www.nature.com/neuro/journal/v10/n11/suppinfo/nn1997_S1.html

    Article  PubMed  CAS  Google Scholar 

  • Higueruelo AP, Jubb H, Blundell TL (2013) Protein-protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 13(5):791–796. doi:10.1016/j.coph.2013.05.009

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP (2009) A pharmacology primer: theory, applications and methods, 2nd edn. Elsevier, Burlington

    Google Scholar 

  • Kerns EH, Di L (2008) Drug-like properties: concepts, structure design and methods. Academic, San Diego

    Google Scholar 

  • Langer T, Hoffmann R, Bryant S, Lesur B (2009) Hit finding: towards ‘smarter’ approaches. Curr Opin Pharmacol 9(5):589–593. doi:10.1016/j.coph.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  • Linnman C, Becerra L, Borsook D (2013) Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J Neuroimmune Pharmacol 8(3):547–563. doi:10.1007/s11481-012-9422-8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mah R, Thomas J, Shafer CM (2013) Drug discovery considerations in the development of covalent inhibitors. Bioorg Med Chem Lett. doi:http://dx.doi.org/10.1016/j.bmcl.2013.10.003

  • Manly CJ, Chandrasekhar J, Ochterski JW, Hammer JD, Warfield BB (2008) Strategies and tactics for optimizing the hit-to-lead process and beyond-a computational chemistry perspective. Drug Discov Today 13(3–4):99–109. doi:10.1016/j.drudis.2007.10.019

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2008) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34(1):74–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9(5):580–588. doi:10.1016/j.coph.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  • Meier C, Cairns-Smith S, Schulze U (2013) Can emerging drug classes improve R & D productivity? Drug Discov Today 18(13–14):607–609. doi:http://dx.doi.org/10.1016/j.drudis.2013.05.006

    Article  PubMed  Google Scholar 

  • Melhem M (2013) Translation of central nervous system occupancy from animal models: application of pharmacokinetic/pharmacodynamic modeling. J Pharmacol Exp Ther 347(1):2–6. doi:10.1124/jpet.112.199794

    Article  PubMed  CAS  Google Scholar 

  • Möller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117(8):1001–1008. doi:10.1007/s00702-010-0430-7

    Article  PubMed  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SDA (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today 17(9–10):419–424. doi:http://dx.doi.org/10.1016/j.drudis.2011.12.020

    Google Scholar 

  • Mullard A (2011) Reliability of ‘new drug target’ claims called into question. Nat Rev Drug Discov 10(9):643–644

    Article  PubMed  CAS  Google Scholar 

  • Nature-Editorial (2012) Must try harder. Nature 483(7391):509–509

    Google Scholar 

  • Nature-Editorial (2013a) Reducing our irreproducibility. Nature 496:398

    Article  Google Scholar 

  • Nature-Editorial (2013b) Special: challenges in irreproducible research. Nature http://www.nature.com/nature/focus/reproducibility/index.html

  • NatureNeuroscience-Editorial (2013) Raising standards. Nat Neurosci 16(5):517–517. doi:10.1038/nn.3391

    Article  Google Scholar 

  • Nolan YM, Sullivan AM, Toulouse A (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends Mol Med 19(3):187–196. doi:http://dx.doi.org/10.1016/j.molmed.2012.12.003

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Nguyen J (2005) Comparison of absorbance and fluorescence methods for determining liquid dispensing precision. J Assoc Lab Autom 10(2):82–87. doi:10.1016/j.jala.2005.01.009

    Article  CAS  Google Scholar 

  • PLoS-Medicine-Editorial (2005) Minimizing mistakes and embracing uncertainty. PLoS Med 2(8):e272. doi:10.1371/journal.pmed.0020272

    Article  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    PubMed  CAS  Google Scholar 

  • Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712–712

    Article  PubMed  CAS  Google Scholar 

  • Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939

    Article  PubMed  CAS  Google Scholar 

  • van de Waterbeemd H (2009) Improving compound quality through in vitro and in silico physicochemical profiling. Chem Biodivers 6(11):1760–1766. doi:10.1002/cbdv.200900056

    Article  PubMed  CAS  Google Scholar 

  • Wager TT, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1(6):435–449. doi:10.1021/cn100008c

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weinstein JR, Koerner IP, Möller T (2010) Microglia in ischemic brain injury. Future Neurol 5(2):227–246. doi:10.2217/fnl.10.1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wermuth CG (2008) The practice of medicinal chemistry. Elsevier, Burlington

    Google Scholar 

  • Weydt P, Weiss MD, Moller T, Carter GT (2002) Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis. Curr Opin Investig Drugs (London, England: 2000) 3(12):1720–1724

    PubMed  CAS  Google Scholar 

  • Whitworth AJ, Theodore DA, Greene JC, Beneš H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci 102(22):8024–8029. doi:10.1073/pnas.0501078102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • William Langston J, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292(2):390–394. doi:http://dx.doi.org/10.1016/0006-8993(84)90777-7

    Article  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83(1):1–16

    Article  CAS  Google Scholar 

  • Witting A, Möller T (2011) Microglia cell culture: a primer for the novice. In: Costa LG, Giordano G, Guizzetti M (eds) In vitro neurotoxicology. Methods in molecular biology, vol 758. Humana, New York, pp 49–66. doi:10.1007/978-1-61779-170-34

    Google Scholar 

  • Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73. doi:10.1177/108705719900400206

    Article  PubMed  Google Scholar 

  • Zhao W, Beers D, Appel S (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8(4):888–899. doi:10.1007/s11481-013-9489-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank Vlad and Alex to have given us the opportunity to write this chapter. We are grateful to all our colleagues in the Neuroinflammation Disease Biology Unit of Lundbeck Research USA for the enthusiasm with which they take every step in the exciting journey of uncovering the secrets of the intriguing and complex science required to improve our understanding of Neuroinflammation, and hopefully deliver new and effective treatments for underserved patients. In particular, we recognize Drs. Robb Brodbeck, Bob Nelson and Gamini Chandrasena for their encouragement. We acknowledge Drs. Stevin H. Zorn and Klaus Bæk Simonsen for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Möller, T., Wes, P.D., Doller, D. (2014). Microglial Biology in Neuroinflammatory Disease: Pharmaco-industrial Approach to Target Validation. In: Parpura, V., Verkhratsky, A. (eds) Pathological Potential of Neuroglia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0974-2_9

Download citation

Publish with us

Policies and ethics