Skip to main content

Glial Glutamate and Metabolic Transporters as a Target for Neurodegenerative Therapy and Biomarkers

  • Chapter
  • First Online:
Pathological Potential of Neuroglia
  • 879 Accesses

Abstract

Glial cells play a significant functional role in neuronal function and synaptic transmission and glial dysfunction contributes greatly to the development and progression of a large number of chronic and acute neurodegenerative disorders. Here, we report the importance of two glial plasma membrane transporter proteins, the astroglial glutamate/excitatory amino acid transporters (EAATs) and the oligodendroglial lactate/monocarboxylate transporters (MCTs), both of which have been shown to be dysregulated in disease. As action potentials invade presynaptic neuronal terminals, glutamate gets released into the synaptic cleft, where it binds and opens postsynaptic onotropic glutamate receptors. To limit excessive postsynaptic stimulation, glutamate is taken up by astrocytes through EAATs, a process coupled to Na+ uptake and increased Na+/K+ pump activity leading to an increased metabolic demand, i.e. the production of ATP. To enhance ATP generation, glucose is taken up from blood vessels into the astrocytes through glucose transporters. The astrocytes convert glucose to pyruvate and lactate , generating ATP through glycolysis. Lactate, the end product of glycolysis could diffuse through gap junctions to oligodendrocytes. Alternatively, oligodendrocytes might generate lactate through glycolysis after glucose uptake from the blood stream. Oligodendrocytes export lactate through MCT1 transporters upon which neurons can import lactate through lactate transporters and use as a metabolic substrate. Any imbalance of the glutamate and/or lactate homeostasis can lead to neuronal degeneration, as shown in a number of neurodegenerative disorders .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong AJ, George DJ, Halabi S (2012) Serum lactate dehydrogenase predicts for overall survival benefit in patients with metastatic renal cell carcinoma treated with inhibition of mammalian target of rapamycin. J Clin Oncol 30:3402–3407

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94:4155–4160

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barpeled O, BenHur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69:2571–2580

    CAS  Google Scholar 

  • Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125:1908–1922

    PubMed  CAS  Google Scholar 

  • Belzil VV, Gendron TF, Petrucelli L (2012) RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 56:406–419

    PubMed  Google Scholar 

  • Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399

    PubMed  CAS  Google Scholar 

  • Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370

    PubMed  Google Scholar 

  • Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    PubMed  CAS  Google Scholar 

  • Berry JD, Shefner JM, Conwit R, Schoenfeld D, Keroack M, Felsenstein D, Krivickas L, David WS, Vriesendorp F, Pestronk A, Caress JB, Katz J, Simpson E, Rosenfeld J, Pascuzzi R, Glass J, Rezania K, Rothstein JD, Greenblatt DJ, Cudkowicz ME (2013) Design and initial results of a multi-phase randomized trial of ceftriaxone in amyotrophic lateral sclerosis. PLoS ONE 8:e61177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, Brummelkamp TR, Clish CB, Sabatini DM (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45:104–108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutierrez R, Cordova A, Valdebenito R, Frommer WB, Barros LF (2010) High resolution measurement of the glycolytic rate. Front Neuroenergetics 2:26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25:319–330

    PubMed  CAS  Google Scholar 

  • Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    PubMed  CAS  Google Scholar 

  • Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23:1298–1306

    PubMed  CAS  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24:1687–1694

    PubMed  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    PubMed  CAS  Google Scholar 

  • Canis M, Maurer MH, Kuschinsky W, Duembgen L, Duelli R (2009) Increased densities of monocarboxylate transporter MCT1 after chronic hyperglycemia in rat brain. Brain Res 1257:32–39

    PubMed  CAS  Google Scholar 

  • Chen JC, Hsu-Chou H, Lu JL, Chiang YC, Huang HM, Wang HL, Wu T, Liao JJ, Yeh TS (2005) Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology 49:703–714

    PubMed  CAS  Google Scholar 

  • Chenal J, Pierre K, Pellerin L (2008) Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway. Eur J Neurosci 27:53–65

    PubMed  Google Scholar 

  • Cheng C, Edin NF, Lauritzen KH, Aspmodal I, Christoffersen S, Jian L, Rasmussen LJ, Pettersen EO, Xiaoqun G, Bergersen LH (2012) Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells. Cell Oncol (Dordr) 35:217–227

    CAS  Google Scholar 

  • Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30:15298–15303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colton CK, Kong Q, Lai L, Zhu MX, Seyb KI, Cuny GD, Xian J, Glicksman MA, Lin CL (2010) Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J Biomol Screen 15:653–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A 86:10148–10152

    PubMed  CAS  PubMed Central  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of L-glutamate L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia-evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    PubMed  CAS  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:586–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drejer J, Meier E, Schousboe A (1983) Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci Lett 37:301–306

    PubMed  CAS  Google Scholar 

  • Eng DL, Lee YL, Lal PG (1997) Expression of glutamate uptake transporters after dibutyryl cyclic AMP differentiation and traumatic injury in cultured astrocytes. Brain Res 778:215–221

    PubMed  CAS  Google Scholar 

  • Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20:3596–3605

    PubMed  CAS  Google Scholar 

  • Fischer KD, Houston AC, Rebec GV (2013) Role of the major glutamate transporter GLT1 in nucleus accumbens core versus shell in cue-induced cocaine-seeking behavior. J Neurosci 33:9319–9327

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fisel P, Kruck S, Winter S, Bedke J, Hennenlotter J, Nies AT, Scharpf M, Fend F, Stenzl A, Schwab M, Schaeffeler E (2013) DNA methylation of the SLC16A3 promoter regulates expression of the human lactate transporter MCT4 in renal cancer with consequences for clinical outcome. Clin Cancer Res 19:5170–5181

    PubMed  CAS  Google Scholar 

  • Fishbein WN (1986) Lactate transporter defect: a new disease of muscle. Science 234:1254–1256

    PubMed  CAS  Google Scholar 

  • Fontana AC, de Oliveira BR, Wojewodzic MW, Ferreira DSantosW, Coutinho-Netto J, Grutle NJ, Watts SD, Danbolt NC, Amara SG (2007) Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol 72:1228–1237

    PubMed  CAS  Google Scholar 

  • Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135

    PubMed  CAS  Google Scholar 

  • Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364:1435–1437

    PubMed  CAS  Google Scholar 

  • Fukamachi S, Furuta A, Ikeda T, Ikenoue T, Kaneoka T, Rothstein JD, Iwaki T (2001) Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Brain Res Dev Brain Res 132:131–139

    PubMed  CAS  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  • Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9:1961–1969

    PubMed  CAS  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997a) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    CAS  Google Scholar 

  • Furuta A, Martin LJ, Lin CL, Dykes-Hoberg M, Rothstein JD (1997b) Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience 81:1031–1042

    CAS  Google Scholar 

  • Galardo MN, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB (2007) The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 39:279–288

    PubMed  CAS  Google Scholar 

  • Galic S, Schneider HP, Broer A, Deitmer JW, Broer S (2003) The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability. Biochem J 376:413–422

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia CK, Brown MS, Pathak RK, Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 270:1843–1849

    PubMed  CAS  Google Scholar 

  • Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    PubMed  CAS  Google Scholar 

  • Ginsberg SD, Martin LJ, Rothstein JD (1995) Regional deafferentation down-regulates subtypes of glutamate transporter proteins. J Neurochem 65:2800–2803

    PubMed  CAS  Google Scholar 

  • Gomez-Galan M, De Bundel D, Van Eeckhaut A, Smolders I, Lindskog M (2013) Dysfunctional astrocytic regulation of glutamate transmission in a rat model of depression. Mol Psychiatry 18:582–594

    PubMed  CAS  Google Scholar 

  • Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA et al (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532

    PubMed  CAS  Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 64:1–9

    PubMed  CAS  Google Scholar 

  • Halestrap AP (2013) The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med 34:337–349

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatta H, Tonouchi M, Miskovic D, Wang Y, Heikkila JJ, Bonen A (2001) Tissue-specific and isoform-specific changes in MCT1 and MCT4 in heart and soleus muscle during a 1-yr period. Am J Physiol Endocrinol Metab 281:E749–E756

    PubMed  CAS  Google Scholar 

  • Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    PubMed  CAS  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    PubMed  CAS  Google Scholar 

  • Hota SK, Barhwal K, Ray K, Singh SB, Ilavazhagan G (2008) Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia. Neurobiol Learn Mem 89:522–532

    PubMed  CAS  Google Scholar 

  • Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro LJ, Cleveland DW, Rothstein JD (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99:1604–1609

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    PubMed  CAS  Google Scholar 

  • Iacono KT, Brown AL, Greene MI, Saouaf SJ (2007) CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 83:283–295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inage YW, Itoh M, Wada K, Takashima S (1998) Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in development and neonatal hypoxic-ischemic damage. J Neuropathol Exp Neurol 57:554–562

    PubMed  CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 100:4879–4884

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenergetics 3:2

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson VN, Price NT, Carpenter L, Halestrap AP (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 324(Pt 2):447–453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang J, Amara SG (2011) New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology 60:172–181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM (2001) Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104:729–734

    PubMed  CAS  Google Scholar 

  • Ke X, Fei F, Chen Y, Xu L, Zhang Z, Huang Q, Zhang H, Yang H, Chen Z, Xing J (2012) Hypoxia upregulates CD147 through a combined effect of HIF-1alpha and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis 33:1598–1607

    PubMed  CAS  Google Scholar 

  • Keller JN, Steiner MR, Mattson MP, Steiner SM (1996) Lysophosphatidic acid decreases glutamate and glucose uptake by astrocytes. J Neurochem 67:2300–2305

    PubMed  CAS  Google Scholar 

  • Kim SY, Choi SY, Chao W, Volsky DJ (2003) Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes. J Neurochem 87:1485–1498

    PubMed  CAS  Google Scholar 

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19:3896–3904

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klier M, Schuler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM (2011) Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II. J Biol Chem 286:27781–27791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47:145–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kucherenko YV, Wagner-Britz L, Bernhardt I, Lang F (2013) Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells. J Membr Biol 246:315–326

    PubMed  CAS  Google Scholar 

  • Lai PC, Huang YT, Wu CC, Lai CJ, Wang PJ, Chiu TH (2011) Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci 18:69

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, Critchlow SE, Roux D, Simon MP, Pouyssegur J (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A 108:16663–16668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee A, Pow DV (2010) Astrocytes: Glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol 42:1901–1906

    PubMed  CAS  Google Scholar 

  • Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527

    PubMed  CAS  Google Scholar 

  • Levy LM, Lehre KP, Walaas SI, Storm-Mathisen J, Danbolt NC (1995) Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain. Eur J Neurosci 7:2036–2041

    PubMed  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    PubMed  CAS  Google Scholar 

  • Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, Robinson MB (2006) Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem 97:759–771

    PubMed  CAS  Google Scholar 

  • Li Y, Sattler R, Yang EJ, Nunes A, Ayukawa Y, Akhtar S, Ji G, Zhang PW, Rothstein JD (2010) Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology 60:1168–1175

    PubMed  PubMed Central  Google Scholar 

  • Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le GL, Bates GP (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8:807–821

    PubMed  CAS  Google Scholar 

  • Lin G, Bristol LA, Rothstein JD (1996) An abnormal mRNA leads to downregulation of glutamate transporter EAAT2 (GLT-1) expression in amyotrophic lateral sclerosis. Ann Neurol 40:540–541

    Google Scholar 

  • Lin CL, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D (2007) Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience 146:617–629

    PubMed  CAS  Google Scholar 

  • Maekawa F, Tsuboi T, Fukuda M, Pellerin L (2009) Regulation of the intracellular distribution, cell surface expression, and protein levels of AMPA receptor GluR2 subunits by the monocarboxylate transporter MCT2 in neuronal cells. J Neurochem 109:1767–1778

    PubMed  CAS  Google Scholar 

  • Maher F, Davies-Hill TM, Lysko PG, Henneberry RC, Simpson IA (1991) Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: evidence for neuron-specific expression of GLUT3. Mol Cell Neurosci 2:351–360

    PubMed  CAS  Google Scholar 

  • Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62

    PubMed  CAS  PubMed Central  Google Scholar 

  • Manoharan C, Wilson MC, Sessions RB, Halestrap AP (2006) The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Mol Membr Biol 23:486–498

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maragakis NJ, Dykes-Hoberg M, Rothstein JD (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477

    PubMed  CAS  Google Scholar 

  • Martin LJ, Brambrink AM, Lehmann C, Portera-Cailliau C, Koehler R, Rothstein J, Traystman RJ (1997) Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 42:335–348

    PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766

    PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F (2000) Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 163:381–387

    PubMed  CAS  Google Scholar 

  • Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, Kennedy RT, Rebec GV (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mineur YS, Picciotto MR, Sanacora G (2007) Antidepressant-like effects of ceftriaxone in male C57BL/6J mice. Biol Psychiatry 61:250–252

    PubMed  CAS  Google Scholar 

  • Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Palmeirim I, Reis RM, Baltazar F (2013) Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-oncology 15:172–188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mitosek-Szewczyk K, Sulkowski G, Stelmasiak Z, Struzynska L (2008) Expression of glutamate transporters GLT-1 and GLAST in different regions of rat brain during the course of experimental autoimmune encephalomyelitis. Neuroscience 155:45–52

    PubMed  CAS  Google Scholar 

  • Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288:7105–7116

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mueller WC, von Deimling A (2009) Gene regulation by methylation. Recent Results Cancer Res 171:217–239

    PubMed  Google Scholar 

  • Murray CM et al (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1:371–376

    PubMed  CAS  Google Scholar 

  • Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468

    PubMed  CAS  Google Scholar 

  • Nakazawa E, Ishikawa H (1998) Ultrastructural observations of astrocyte end-feet in the rat central nervous system. J Neurocytol 27:431–440

    PubMed  CAS  Google Scholar 

  • Nelson K (2002) 3-Bromopyruvate kills cancer cells in animals. Lancet Oncol 3:524

    PubMed  Google Scholar 

  • Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    PubMed  CAS  Google Scholar 

  • Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, Schuit F, Quintens R, Sipila I, Mayatepek E, Meissner T, Halestrap AP, Rutter GA, Kere J (2007) Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet 81:467–474

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP (2010) AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem J 425:523–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parks SK, Mazure NM, Counillon L, Pouyssegur J (2013) Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J Cell Physiol 228:1854–1862

    PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept. ASN Neuro 4:201–205

    PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    PubMed  CAS  PubMed Central  Google Scholar 

  • Philp N, Chu P, Pan TC, Zhang RZ, Chu ML, Stark K, Boettiger D, Yoon H, Kieber-Emmons T (1995) Developmental expression and molecular cloning of REMP, a novel retinal epithelial membrane protein. Exp Cell Res 219:64–73

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627

    PubMed  CAS  Google Scholar 

  • Pilegaard H, Mohr T, Kjaer M, Juel C (1998) Lactate/H+ transport in skeletal muscle from spinal-cord-injured patients. Scand J Med Sci Sports 8:98–101

    PubMed  CAS  Google Scholar 

  • Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 276:E255–E261

    PubMed  CAS  Google Scholar 

  • Poole RC, Halestrap AP (1991) Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors. Biochem J 275(Pt 2):307–312

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pullen TJ, da Silva XG, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31:3182–3194

    PubMed  CAS  PubMed Central  Google Scholar 

  • Queiros O, Preto A, Pacheco A, Pinheiro C, Azevedo-Silva J, Moreira R, Pedro M, Ko YH, Pedersen PL, Baltazar F, Casal M (2012) Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr 44:141–153

    PubMed  CAS  Google Scholar 

  • Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688

    PubMed  CAS  Google Scholar 

  • Ramos KM, Lewis MT, Morgan KN, Crysdale NY, Kroll JL, Taylor FR, Harrison JA, Sloane EM, Maier SF, Watkins LR (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169:1888–1900

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rao PS, Sari Y (2012) Glutamate transporter 1: target for the treatment of alcohol dependence. Curr Med Chem 19:5148–5156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rao VL, Bowen KK, Dempsey RJ (2001) Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem Res 26:497–502

    PubMed  CAS  Google Scholar 

  • Rauen T (2000) Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids 19:53–62

    PubMed  CAS  Google Scholar 

  • Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548

    PubMed  CAS  PubMed Central  Google Scholar 

  • Robinet C, Pellerin L (2010) Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons. J Cereb Blood Flow Metab 30:286–298

    PubMed  CAS  PubMed Central  Google Scholar 

  • Robinson MB (2006) Acute regulation of sodium-dependent glutamate transporters: a focus on constitutive and regulated trafficking. Handb Exp Pharmacol 175:251–275

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    PubMed  CAS  Google Scholar 

  • Saksena S, Dwivedi A, Gill RK, Singla A, Alrefai WA, Malakooti J, Ramaswamy K, Dudeja PK (2009) PKC-dependent stimulation of the human MCT1 promoter involves transcription factor AP2. Am J Physiol Gastrointest Liver Physiol 296:G275–G283

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sanacora G, Kendell SF, Fenton L, Coric V, Krystal JH (2004) Riluzole augmentation for treatment-resistant depression. Am J Psychiatry 161:2132

    PubMed  Google Scholar 

  • Sarac S, Afzal S, Broholm H, Madsen FF, Ploug T, Laursen H (2009) Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS 117:291–301

    PubMed  CAS  Google Scholar 

  • Sattler R, Rothstein JD (2006) Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol 175:277–303

    PubMed  CAS  Google Scholar 

  • Sattler R, Rothstein JD (2007) Targeting an old mechanism in a new disease-protection of glutamatergic dysfunction in depression. Biol Psychiatry 61:137–138

    PubMed  Google Scholar 

  • Sattler R, Ayukawa Y, Coddington L, Sawa A, Block D, Chipkin R, Rothstein JD (2011) Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol 232:203–211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sattler R, Tyler B, Hoover B, Coddington LT, Recinos V, Hwang L, Brem H, Rothstein JD (2013) Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. J Neurosurg 119:878–886

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  • Schmidt S, Richter M, Montag D, Sartorius T, Gawlik V, Hennige AM, Scherneck S, Himmelbauer H, Lutz SZ, Augustin R, Kluge R, Ruth P, Joost HG, Schurmann A (2008) Neuronal functions, feeding behavior, and energy balance in Slc2a3+/- mice. Am J Physiol Endocrinol Metab 295:E1084–E1094

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744:105–111

    PubMed  CAS  Google Scholar 

  • Serres S, Bezancon E, Franconi JM, Merle M (2004) Ex vivo analysis of lactate and glucose metabolism in the rat brain under different states of depressed activity. J Biol Chem 279:47881–47889

    PubMed  CAS  Google Scholar 

  • Shashidharan P, Plaitakis A (1993) Cloning and characterization of a glutamate transporter cDNA from human cerebellum. Biochim Biophys Acta 1216:161–164

    PubMed  CAS  Google Scholar 

  • Shashidharan P, Huntley GW, Meyer T, Morrison JH, Plaitakis A (1994) Neuron-specific human glutamate transporter: molecular cloning, characterization and expression in human brain. Brain Res 662:245–250

    PubMed  CAS  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664

    PubMed  CAS  Google Scholar 

  • Sondheimer I, Knackstedt LA (2011) Ceftriaxone prevents the induction of cocaine sensitization and produces enduring attenuation of cue- and cocaine-primed reinstatement of cocaine-seeking. Behav Brain Res 225:252–258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stuart CA, Ross IR, Howell ME, McCurry MP, Wood TG, Ceci JD, Kennel SJ, Wall J (2011) Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake. Brain Res 1384:15–22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A 100:1955–1960

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169

    PubMed  Google Scholar 

  • Sutherland ML, Martinowich K, Rothstein JD (2001) EAAT2 overexpression plays a neuroprotective role in the SOD1 G93A model of amyotrophic lateral sclerosis. Soc Neurosci Abstr 27:607.6

    Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    PubMed  CAS  PubMed Central  Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  • Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 92:4616–4620

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takimoto M, Takeyama M, Hamada T (2013) Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle. Metabolism 62:1633–1640

    PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    PubMed  CAS  Google Scholar 

  • Thone-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, Lucht K, Hortnagl H, Godes M, Muller S, Rumschussel K, Funke-Kaiser H, Villringer A, Steckelings UM, Unger T (2008) The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens 26:2426–2435

    PubMed  Google Scholar 

  • Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, Lin CL (2007) Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 282:1727–1737

    PubMed  CAS  Google Scholar 

  • Torres-Salazar D, Fahlke C (2007) Parawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology. Mol Pharmacol 72:1100–1102

    PubMed  CAS  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037

    PubMed  CAS  Google Scholar 

  • van denBCJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Google Scholar 

  • Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez deCS, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    PubMed  CAS  Google Scholar 

  • Visser WE, Friesema EC, Visser TJ (2011) Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25:1–14

    PubMed  CAS  Google Scholar 

  • Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    PubMed  CAS  Google Scholar 

  • Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC (2006) A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 15:1169–1179

    PubMed  CAS  Google Scholar 

  • Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 280:27213–27221

    PubMed  CAS  Google Scholar 

  • Wilson MC, Meredith D, Bunnun C, Sessions RB, Halestrap AP (2009) Studies on the DIDS-binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle. J Biol Chem 284:20011–20021

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    PubMed  CAS  Google Scholar 

  • Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, Li Jeon N, Robinson MB, Rothstein JD (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61:880–894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58:277–286

    PubMed  PubMed Central  Google Scholar 

  • Yeh TH, Hwang HM, Chen JJ, Wu T, Li AH, Wang HL (2005) Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol Dis 18:476–483

    PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    PubMed  CAS  Google Scholar 

  • Zelenaia OA, Robinson MB (2000) Degradation of glial glutamate transporter mRNAs is selectively blocked by inhibition of cellular transcription. J Neurochem 75:2252–2258

    PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    PubMed  CAS  Google Scholar 

  • Zschocke J, Allritz C, Engele J, Rein T (2007) DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia 55:663–674

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Sattler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Philips, T., Sattler, R. (2014). Glial Glutamate and Metabolic Transporters as a Target for Neurodegenerative Therapy and Biomarkers. In: Parpura, V., Verkhratsky, A. (eds) Pathological Potential of Neuroglia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0974-2_4

Download citation

Publish with us

Policies and ethics