Skip to main content

Enteric Glial Cells: Implications in Gut Pathology

  • Chapter
  • First Online:
Pathological Potential of Neuroglia

Abstract

Gastrointestinal (GI) diseases are common, debilitating and all too often, humiliating disorders. Many of the most devastating, and permanent symptoms of GI disease are caused by alterations to the enteric nervous system (ENS); the local neural network that lines the walls of the intestines and controls moment-to-moment gut functions. The ENS is by far the largest, and most complex, component of the peripheral nervous system and the intrinsic neural circuitry within the ganglionated enteric neural networks can control most gut functions in the absence of input from the central nervous system (CNS). This “little brain” in the gut is more similar in size, complexity and autonomy to the CNS than other components of the autonomic nervous system. Like the CNS, this “gut brain” has its own distinct population of glia, called enteric glia, that are analogous to the astrocytes of the CNS. Recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology but elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remains elusive. This chapter focuses on our current understanding of enteric glial physiology and how enteric glia contribute to, or are altered by, pathological events in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, Masson D, Galmiche JP, Vanden Berghe P, Neunlist M, Lardeux B (2010) Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J 24:1082–1094

    PubMed  CAS  Google Scholar 

  • Abdo H, Mahé MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B (2012) The omega-6 fatty acid derivative 15-deoxy-Δ12,14-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. J Physiol 590:2739–2750

    Google Scholar 

  • Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, Srinivasan S (2006) GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 116:344–356

    Google Scholar 

  • Aoki E, Semba R, Kashiwamata S (1991) Evidence for the presence of L-arginine in the glial components of the peripheral nervous system. Brain Res 559:159–162

    PubMed  CAS  Google Scholar 

  • Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    PubMed  CAS  Google Scholar 

  • Bach-Ngohou K, Mahé MM, Aubert P, Abdo H, Boni S, Bourreille A, Denis MG, Lardeux B, Neunlist M, Masson D (2010) Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J Physiol 588:2533–2544

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bamias G, Kaltsa G, Ladas SD (2011) Cytokines in the pathogenesis of ulcerative colitis. Discov Med 11:459–467

    PubMed  Google Scholar 

  • Bassotti G, Chistolini F, Nzepa FS, Morelli A (2003) Colonic propulsive impairment in intractable slow-transit constipation. Arch Surg 138:1302–1304

    PubMed  Google Scholar 

  • Bassotti G, Villanacci V, Maurer CA, Fisogni S, Di Fabio F, Cadei M, Morelli A, Panagiotis T, Cathomas G, Salerni B (2006) The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 55:41–46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Manenti S, Antonelli E, Fanini L, Salerni B (2012) Increase of colonic mast cells in obstructed defecation and their relationship with enteric glia. Dig Dis Sci 57:65–71

    PubMed  CAS  Google Scholar 

  • Boesmans W, Cirillo C, Van den Abbeel V, Van den Haute C, Depoortere I, Tack J, Vanden Berghe P (2013) Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells. Neurogastroenterol Motil 25:e151–e160

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    PubMed  CAS  Google Scholar 

  • Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132

    PubMed  Google Scholar 

  • Broadhead MJ, Bayguinov PO, Okamoto T, Heredia DJ, Smith TK (2012) Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. J Physiol 590:335–350

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    PubMed  CAS  Google Scholar 

  • Cario E (2008) Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol 1(Suppl 1):S62–S66

    PubMed  CAS  Google Scholar 

  • Cheadle GA, Costantini TW, Lopez N, Bansal V, Eliceiri BP, Coimbra R (2013) Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS ONE 8:e69042

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    PubMed  CAS  Google Scholar 

  • Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF, Lassmann H, Desreumaux P, Liblau RS (2001) Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn’s disease? Proc Natl Acad Sci U S A 98:13306–13311

    PubMed  CAS  PubMed Central  Google Scholar 

  • Costagliola A, Van Nassauw L, Snyders D, Adriaensen D, Timmermans JP (2009) Voltage-gated delayed rectifier K v 1-subunits may serve as distinctive markers for enteroglial cells with different phenotypes in the murine ileum. Neurosci Lett 461:80–84

    PubMed  CAS  Google Scholar 

  • da Silveira AB, Freitas MA, de Oliveira EC, Neto SG, Luquetti AO, Furness JB, Correa-Oliveira R, Reis D (2009) Glial fibrillary acidic protein and S-100 colocalization in the enteroglial cells in dilated and nondilated portions of colon from chagasic patients. Hum Pathol 40:244–251

    PubMed  CAS  Google Scholar 

  • da Silveira AB, de Oliveira EC, Neto SG, Luquetti AO, Fujiwara RT, Oliveira RC, Brehmer A (2011) Enteroglial cells act as antigen-presenting cells in chagasic megacolon. Hum Pathol 42:522–532

    PubMed  Google Scholar 

  • De Giorgio R, Camilleri M (2004) Human enteric neuropathies: morphology and molecular pathology. Neurogastroenterol Motil 16:515–531

    PubMed  CAS  Google Scholar 

  • De Giorgio R, Giancola F, Boschetti E, Abdo H, Lardeux B, Neunlist M (2012) Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiol Gastrointest Liver Physiol 303:G887–G893

    PubMed  CAS  Google Scholar 

  • Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, Neunlist M, Derkinderen P (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48

    PubMed  CAS  Google Scholar 

  • Dogiel AS (1899) Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol Leipzig Anat Abstr 1899:130–158

    Google Scholar 

  • Dugina TN, Kiseleva EV, Chistov IV, Umarova BA, Strukova SM (2002) Receptors of the PAR family as a link between blood coagulation and inflammation. Biochemistry (Mosc) 67:65–74

    CAS  Google Scholar 

  • Dulac C, Le Douarin NM (1991) Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Natl Acad Sci U S A 88:6358–6362

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards LL, Pfeiffer RF, Quigley EM, Hofman R, Balluff M (1991) Gastrointestinal symptoms in Parkinson’s disease. Mov Disord 6:151–156

    PubMed  CAS  Google Scholar 

  • Ellis JH, Burden MN, Vinogradov DV, Linge C, Crowe JS (1996) Interactions of CD80 and CD86 with CD28 and CTLA4. J Immunol 156:2700–2709

    PubMed  CAS  Google Scholar 

  • Enck P, Frieling T (1997) Pathophysiology of diabetic gastroparesis. Diabetes 46(Suppl 2):S77–S81

    PubMed  CAS  Google Scholar 

  • Esworthy RS, Aranda R, Martín MG, Doroshow JH, Binder SW, Chu FF (2001) Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 281:G848–G855

    PubMed  CAS  Google Scholar 

  • Ferri GL, Probert L, Cocchia D, Michetti F, Marangos PJ, Polak JM (1982) Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature 297:409–410

    PubMed  CAS  Google Scholar 

  • Fletcher EL, Clark MJ, Furness JB (2002) Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell Tissue Res 308:339–346

    PubMed  CAS  Google Scholar 

  • Friedman DJ, Künzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106:16788–16793

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frohman EM, Frohman TC, Vayuvegula B, Gupta S, van den Noort S (1988) Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes. J Neurol Sci 88:339–346

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    PubMed  CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    PubMed  CAS  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    PubMed  CAS  Google Scholar 

  • Gabella G (1972) Fine structure of the myenteric plexus in the guinea-pig ileum. J Anat 111:69–97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabella G (1981) Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial cells. Neuroscience 6:425–436

    PubMed  CAS  Google Scholar 

  • Gabella G (1984) Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea-pig. J Neurocytol 13:73–84

    PubMed  CAS  Google Scholar 

  • Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    PubMed  CAS  Google Scholar 

  • Galligan JJ, Bertrand PP (1994) ATP mediates fast synaptic potentials in enteric neurons. J Neurosci 14:7563–7571

    PubMed  CAS  Google Scholar 

  • Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garrido R, Segura B, Zhang W, Mulholland M (2002) Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia. J Neurochem 83:556–564

    PubMed  CAS  Google Scholar 

  • Geboes K, Rutgeerts P, Ectors N, Mebis J, Penninckx F, Vantrappen G, Desmet VJ (1992) Major histocompatibility class II expression on the small intestinal nervous system in Crohn’s disease. Gastroenterology 103:439–447

    PubMed  CAS  Google Scholar 

  • Gershon MD, Rothman TP (1991) Enteric glia. Glia 4:195–204

    PubMed  CAS  Google Scholar 

  • Gomes P, Chevalier J, Boesmans W, Roosen L, van den Abbeel V, Neunlist M, Tack J, Vanden Berghe P (2009) ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Neurogastroenterol Motil 21:870–862

    PubMed  CAS  Google Scholar 

  • Green CL, Ho W, Sharkey KA, McKay DM (2004) Dextran sodium sulfate-induced colitis reveals nicotinic modulation of ion transport via iNOS-derived NO. Am J Physiol Gastrointest Liver Physiol 287:G706–G714

    PubMed  CAS  Google Scholar 

  • Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136:1349–1358

    PubMed  CAS  Google Scholar 

  • Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9:625–632

    PubMed  CAS  Google Scholar 

  • Gulbransen BD, Bains JS, Sharkey KA (2010) Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 30:6801–6809

    PubMed  CAS  Google Scholar 

  • Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2 × 7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guzman J, Yu JG, Suntres Z, Bozarov A, Cooke H, Javed N, Auer H, Palatini J, Hassanain HH, Cardounel AJ, Javed A, Grants I, Wunderlich JE, Christofi FL (2006) ADOA3R as a therapeutic target in experimental colitis: proof by validated high-density oligonucleotide microarray analysis. Inflamm Bowel Dis 12:766–789

    PubMed  Google Scholar 

  • Hanani M, Reichenbach A (1994) Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res 278:153–160

    PubMed  CAS  Google Scholar 

  • Hanani M, Francke M, Härtig W, Grosche J, Reichenbach A, Pannicke T (2000) Patch-clamp study of neurons and glial cells in isolated myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 278:G644–G651

    PubMed  CAS  Google Scholar 

  • Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG (2013) MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33:9592–9600

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heuschling P (1995) Nitric oxide modulates gamma-interferon-induced MHC class II antigen expression on rat astrocytes. J Neuroimmunol 57:63–69

    PubMed  CAS  Google Scholar 

  • Hoff S, Zeller F, von Weyhern CW, Wegner M, Schemann M, Michel K, Rühl A (2008) Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol 509:356–371

    PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    PubMed  CAS  Google Scholar 

  • Joseph NM, He S, Quintana E, Kim YG, Núñez G, Morrison SJ (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121:3398–3411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kimball BC, Mulholland MW (1996) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J Neurochem 66:604–612

    PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17:8804–8816

    PubMed  CAS  Google Scholar 

  • Kitamura S, Miyazaki Y, Shinomura Y, Kondo S, Kanayama S, Matsuzawa Y (1999) Peroxisome proliferator-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells. Jpn J Cancer Res 90:75–80

    PubMed  CAS  Google Scholar 

  • Koretz K, Momburg F, Otto HF, Möller P (1987) Sequential induction of MHC antigens on autochthonous cells of ileum affected by Crohn’s disease. Am J Pathol 129:493–502

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laranjeira C, Pachnis V (2009) Enteric nervous system development: recent progress and future challenges. Auton Neurosci 151:61–69

    PubMed  CAS  Google Scholar 

  • Lavoie EG, Gulbransen BD, Martín-Satué M, Aliagas E, Sharkey KA, Sévigny J (2011) Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 300:G608–G620

    PubMed  CAS  Google Scholar 

  • Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517

    PubMed  Google Scholar 

  • Lomax AE, Mawe GM, Sharkey KA (2005) Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J Physiol 564:863–875

    PubMed  CAS  PubMed Central  Google Scholar 

  • Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088

    PubMed  CAS  Google Scholar 

  • McClain J, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM, Sévigny J, Galligan JJ, Parpura V, Gulbransen BD (2013) Calcium responses between enteric glia are mediated by connexin-43 hemichannels and function to modulate colonic transit in the mouse. Gastroenterology. pii:S0016-5085(13)01579-5. doi:10.1053/j.gastro.2013.10.061

    Google Scholar 

  • Mueller K, Michel K, Krueger D, Demir IE, Ceyhan GO, Zeller F, Kreis ME, Schemann M (2011) Activity of protease-activated receptors in the human submucous plexus. Gastroenterology 141:2088–2097.e2081

    PubMed  CAS  Google Scholar 

  • Nagahama M, Semba R, Tsuzuki M, Aoki E (2001) L-arginine immunoreactive enteric glial cells in the enteric nervous system of rat ileum. Biol Signals Recept 10:336–340

    PubMed  CAS  Google Scholar 

  • Nasser Y, Ho W, Sharkey KA (2006) Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J Comp Neurol 495:529–553

    PubMed  CAS  Google Scholar 

  • Nasser Y, Keenan CM, Ma AC, McCafferty DM, Sharkey KA (2007) Expression of a functional metabotropic glutamate receptor 5 on enteric glia is altered in states of inflammation. Glia 55:859–872

    PubMed  Google Scholar 

  • Neunlist M, Aubert P, Bonnaud S, Van Landeghem L, Coron E, Wedel T, Naveilhan P, Ruhl A, Lardeux B, Savidge T, Paris F, Galmiche JP (2007) Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 292:G231–G241

    PubMed  CAS  Google Scholar 

  • Neunlist M, Van Landeghem L, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M (2013) The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10:90–100

    PubMed  CAS  Google Scholar 

  • Nikolaus S, Bauditz J, Gionchetti P, Witt C, Lochs H, Schreiber S (1998) Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. Gut 42:470–476

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pekny M, Levéen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14:1590–1598

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pfeiffer RF (2011) Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 17:10–15

    PubMed  Google Scholar 

  • Pouclet H, Lebouvier T, Coron E, Des Varannes SB, Neunlist M, Derkinderen P (2012) A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson’s disease. Neurogastroenterol Motil 24:e202–e205

    PubMed  CAS  Google Scholar 

  • Rehn M, Hübschle T, Diener M (2004) TNF-alpha hyperpolarizes membrane potential and potentiates the response to nicotinic receptor stimulation in cultured rat myenteric neurones. Acta Physiol Scand 181:13–22

    PubMed  CAS  Google Scholar 

  • Reinshagen M, Rohm H, Steinkamp M, Lieb K, Geerling I, Von Herbay A, Flämig G, Eysselein VE, Adler G (2000) Protective role of neurotrophins in experimental inflammation of the rat gut. Gastroenterology 119:368–376

    PubMed  CAS  Google Scholar 

  • Rescigno M (2010) Functional specialization of antigen presenting cells in the gastrointestinal tract. Curr Opin Immunol 22:131–136

    PubMed  CAS  Google Scholar 

  • Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52:2015–2021

    PubMed  Google Scholar 

  • Rodrigues DM, Li AY, Nair DG, Blennerhassett MG (2011) Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 23:e44–e56

    PubMed  CAS  Google Scholar 

  • Rybaczyk L, Rozmiarek A, Circle K, Grants I, Needleman B, Wunderlich JE, Huang K, Christofi FL (2009) New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 15:971–984

    PubMed  PubMed Central  Google Scholar 

  • Rühl A, Franzke S, Stremmel W (2001a) IL-1beta and IL-10 have dual effects on enteric glial cell proliferation. Neurogastroenterol Motil 13:89–94

    Google Scholar 

  • Rühl A, Franzke S, Collins SM, Stremmel W (2001b) Interleukin-6 expression and regulation in rat enteric glial cells. Am J Physiol Gastrointest Liver Physiol 280:G1163–G1171

    Google Scholar 

  • Rühl A, Nasser Y, Sharkey KA (2004) Enteric glia. Neurogastroenterol Motil 16(Suppl 1):44–49

    PubMed  Google Scholar 

  • Rühl A, Hoppe S, Frey I, Daniel H, Schemann M (2005) Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J Comp Neurol 490:1–11

    PubMed  Google Scholar 

  • Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    PubMed  CAS  Google Scholar 

  • Sartor RB (1995) Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease. Gastroenterol Clin North Am 24:475–507

    PubMed  CAS  Google Scholar 

  • Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344–1358

    PubMed  CAS  Google Scholar 

  • Schiller LR (2001) Review article: the therapy of constipation. Aliment Pharmacol Ther 15:749–763

    PubMed  CAS  Google Scholar 

  • Segura BJ, Zhang W, Cowles RA, Xiao L, Lin TR, Logsdon C, Mulholland MW (2004a) Lysophosphatidic acid stimulates calcium transients in enteric glia. Neuroscience 123:687–693

    CAS  Google Scholar 

  • Segura BJ, Zhang W, Xiao L, Turner D, Cowles RA, Logsdon C, Mulholland MW (2004b) Sphingosine-1-phosphate mediates calcium signaling in guinea pig enteroglial cells. J Surg Res 116:42–54

    CAS  Google Scholar 

  • Selgrad M, De Giorgio R, Fini L, Cogliandro RF, Williams S, Stanghellini V, Barbara G, Tonini M, Corinaldesi R, Genta RM, Domiati-Saad R, Meyer R, Goel A, Boland CR, Ricciardiello L (2009) JC virus infects the enteric glia of patients with chronic idiopathic intestinal pseudo-obstruction. Gut 58:25–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 27:716–719

    PubMed  Google Scholar 

  • Shpacovitch VM, Brzoska T, Buddenkotte J, Stroh C, Sommerhoff CP, Ansel JC, Schulze-Osthoff K, Bunnett NW, Luger TA, Steinhoff M (2002) Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kappaB in human dermal microvascular endothelial cells. J Invest Dermatol 118:380–385

    PubMed  CAS  Google Scholar 

  • Sido B, Hack V, Hochlehnert A, Lipps H, Herfarth C, Dröge W (1998) Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 42:485–492

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, Ludwig L, Adler G, Reinshagen M (2003) Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 124:1748–1757

    PubMed  CAS  Google Scholar 

  • Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O (2013a) High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci 177:199–210

    CAS  Google Scholar 

  • Stenkamp-Strahm CM, Kappmeyer AJ, Schmalz JT, Gericke M, Balemba O (2013b) High-fat diet ingestion correlates with neuropathy in the duodenum myenteric plexus of obese mice with symptoms of type 2 diabetes. Cell Tissue Res 354:381–394

    CAS  Google Scholar 

  • Thacker M, Rivera LR, Cho HJ, Furness JB (2011) The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterol Motil 23:e500–e509

    PubMed  CAS  Google Scholar 

  • Tjwa ET, Bradley JM, Keenan CM, Kroese AB, Sharkey KA (2003) Interleukin-1beta activates specific populations of enteric neurons and enteric glia in the guinea pig ileum and colon. Am J Physiol Gastrointest Liver Physiol 285:G1268–G1276

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    PubMed  CAS  Google Scholar 

  • Törnblom H, Lindberg G, Nyberg B, Veress B (2002) Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 123:1972–1979

    PubMed  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    PubMed  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    PubMed  CAS  Google Scholar 

  • Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2 × 7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312:149–154

    PubMed  Google Scholar 

  • Van Landeghem L, Chevalier J, Mahé MM, Wedel T, Urvil P, Derkinderen P, Savidge T, Neunlist M (2011) Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am J Physiol Gastrointest Liver Physiol 300:G976–G987

    PubMed  CAS  PubMed Central  Google Scholar 

  • von Boyen GB, Steinkamp M, Reinshagen M, Schäfer KH, Adler G, Kirsch J (2004) Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia. Gut 53:222–228

    PubMed  CAS  PubMed Central  Google Scholar 

  • von Boyen GB, Steinkamp M, Reinshagen M, Schäfer KH, Adler G, Kirsch J (2006a) Nerve growth factor secretion in cultured enteric glia cells is modulated by proinflammatory cytokines. J Neuroendocrinol 18:820–825

    CAS  Google Scholar 

  • von Boyen GB, Steinkamp M, Geerling I, Reinshagen M, Schäfer KH, Adler G, Kirsch J (2006b) Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: a key to the regulation of epithelial apoptosis in Crohn’s disease. Inflamm Bowel Dis 12:346–354

    Google Scholar 

  • von Boyen GB, Schulte N, Pflüger C, Spaniol U, Hartmann C, Steinkamp M (2011) Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol 11:3

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watkins DJ, Besner GE (2013) The role of the intestinal microcirculation in necrotizing enterocolitis. Semin Pediatr Surg 22:83–87

    PubMed  PubMed Central  Google Scholar 

  • Wedel T, Krammer HJ, Kühnel W, Sigge W (1998) Alterations of the enteric nervous system in neonatal necrotizing enterocolitis revealed by whole-mount immunohistochemistry. Pediatr Pathol Lab Med 18:57–70

    PubMed  CAS  Google Scholar 

  • Wedel T, Büsing V, Heinrichs G, Nohroudi K, Bruch HP, Roblick UJ, Böttner M (2010) Diverticular disease is associated with an enteric neuropathy as revealed by morphometric analysis. Neurogastroenterol Motil 22:407–414, e493–e 404

    PubMed  CAS  Google Scholar 

  • Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310:688–691

    PubMed  CAS  Google Scholar 

  • Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    PubMed  CAS  Google Scholar 

  • Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2 × (3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    PubMed  CAS  Google Scholar 

  • Zeng X, Zhang S, Xu L, Yang H, He S (2013) Activation of protease-activated receptor 2-mediated signaling by mast cell tryptase modulates cytokine production in primary cultured astrocytes. Mediators Inflamm 2013:140812

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Sarosi G, Barnhart D, Yule DI, Mulholland MW (1997) Endothelin-activated calcium signaling in enteric glia derived from neonatal guinea pig. Am J Physiol 272:G1175–G1185

    PubMed  CAS  Google Scholar 

  • Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW (2003) Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Glia 42:252–262

    PubMed  Google Scholar 

  • Zhu H, Li YR (2012) Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood) 237:474–480

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Gulbransen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gulbransen, B., Brown, I. (2014). Enteric Glial Cells: Implications in Gut Pathology. In: Parpura, V., Verkhratsky, A. (eds) Pathological Potential of Neuroglia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0974-2_21

Download citation

Publish with us

Policies and ethics