Skip to main content

Astroglial Connexins as Elements of Sleep-Wake Cycle Regulation and Dysfunction

  • Chapter
  • First Online:
Pathological Potential of Neuroglia

Abstract

Sleep is fundamental for survival of animals and humans. Minor perturbations in sleep duration or timing can lead to cognitive impairments. Patients with sleep disorders suffer from high health risks and poor quality of life. Mechanisms of sleep function and their dysfunction are still far from being understood and concepts based on novel hypotheses are required. Discovery of dynamic neuronal-glial interaction has offered the opportunity to perceive sleep-wake cycle from another angle. Here, we summarize data indicating how astrocytes can contribute to the regulation of sleep, with a focus on the roles of astrocytic in adenosine homeostasis and metabolism. Also, we discuss evidence indicating that several treatments known to affect sleep-wake cycle have an impact on connexin-mediated astroglial networking. We further hypothesize that sleep homeostasis will be affected by pharmacological or genetic modifications of connexin channel functions in astrocytes. Taken together, accumulating knowledge on astrocyte functions in sleep-wake cycle implicates the glial cells as promising new therapeutic targets for sleep disorders treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alanko L, Porkka-Heiskanen T, Soinila S (2006) Localization of equilibrative nucleoside transporters in the rat brain. J Chem Neuroanat 31:162–168

    PubMed  CAS  Google Scholar 

  • Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87

    PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (1995) Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. J Neurophysiol 73:20–38

    PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (2000) Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci 20:6648–6665

    PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  • Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S, Berger W, Landolt HP (2012) Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22:962–970

    PubMed  Google Scholar 

  • Barros LF, Courjaret R, Jakoby P, Loaiza A, Lohr C, Deitmer JW (2009) Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia 57:962–970

    PubMed  CAS  Google Scholar 

  • Basheer R, Porkka-Heiskanen T, Stenberg D, McCarley RW (1999) Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res 73:1–10

    PubMed  CAS  Google Scholar 

  • Beck P, Odle A, Wallace-Huitt T, Skinner RD, Garcia-Rill E (2008) Modafinil increases arousal determined by P13 potential amplitude: an effect blocked by gap junction antagonists. Sleep 31:1647–1654

    PubMed  PubMed Central  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    PubMed  Google Scholar 

  • Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7:238–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 29:1267–1276

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–495

    PubMed  CAS  Google Scholar 

  • Borbely AA, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14:171–182

    PubMed  CAS  Google Scholar 

  • Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, Bonvento G (2001) Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 21:404–412

    PubMed  CAS  Google Scholar 

  • Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30:15298–15303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725

    PubMed  Google Scholar 

  • Cunningham MO, Pervouchine DD, Racca C, Kopell NJ, Davies CH, Jones RS, Traub RD, Whittington MA (2006) Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci U S A 103:5597–5601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dash MB, Bellesi M, Tononi G, Cirelli C (2012) Sleep-wake dependent changes in cortical glucose concentrations. J Neurochem 124:79–89

    PubMed  PubMed Central  Google Scholar 

  • Dauvilliers Y (2007) Insomnia in patients with neurodegenerative conditions. Sleep Med 8(Suppl 4):S27–S34

    PubMed  Google Scholar 

  • DeMartinis NA, Kamath J, Winokur A (2009) New approaches for the treatment of sleep disorders. Adv Pharmacol 57:187–235

    PubMed  CAS  Google Scholar 

  • Desseilles M, Dang-Vu T, Schabus M, Sterpenich V, Maquet P, Schwartz S (2008) Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 31:777–794

    PubMed  PubMed Central  Google Scholar 

  • Dijk DJ, Brunner DP, Beersma DG, Borbely AA (1990) Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep 13:430–440

    PubMed  CAS  Google Scholar 

  • Filippov MA, Hormuzdi SG, Fuchs EC, Monyer H (2003) A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur J Neurosci 18:3183–3192

    PubMed  Google Scholar 

  • Frank MG (2010) The functions of sleep. In: Winkelman JW, Plante DT (eds) Foundations of psychiatric sleep medicine. Cambridge University Press, Cambridge, pp 59–78

    Google Scholar 

  • Froger N, Orellana JA, Calvo CF, Amigou E, Kozoriz MG, Naus CC, Saez JC, Giaume C (2010) Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci 45:37–46

    PubMed  CAS  Google Scholar 

  • Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Saez JC, Bennett MV, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci U S A 107:22659–22664

    PubMed  PubMed Central  Google Scholar 

  • Geiger JD, Fyda DM (1991) Adenosine transport in nervous system tissues. In: Stone TW (ed) Adenosine in the nervous system. Academic, San Diego, p 1e23

    Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    PubMed  CAS  Google Scholar 

  • Giaume C, Leybaert L, Naus C C, Saez J-C (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    PubMed  CAS  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    PubMed  CAS  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    PubMed  CAS  Google Scholar 

  • Huston JP, Haas HL, Boix F, Pfister M, Decking U, Schrader J, Schwarting RK (1996) Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 73:99–107

    PubMed  CAS  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R (2008) The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience 157:238–253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kettenmann H, Ransom BR (2013) Neuroglia. Oxford University Press, New York

    Google Scholar 

  • Lin AL, Fox PT, Hardies J, Duong TQ, Gao JH (2010) Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A 107:8446–8451

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Petit JM, Ezan P, Gyger J, Magistretti P, Giaume C (2013) The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes. Neuropharmacology 75:533–538

    PubMed  CAS  Google Scholar 

  • Mantz J, Hindelang C, Mantz JM, Stoeckel ME (1993) Muscle regeneration after exercise-induced myoglobinuria: an electron microscopic study. Virchows Arch A Pathol Anat Histopathol 423:91–95

    PubMed  CAS  Google Scholar 

  • Maquet P (1995) Sleep function(s) and cerebral metabolism. Behav Brain Res 69:75–83

    PubMed  CAS  Google Scholar 

  • Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O’Hara BF, Franken P, Tafti M (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104:20090–20095

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    PubMed  CAS  Google Scholar 

  • McKenna JT, Tartar JL, Ward CP, Thakkar MM, Cordeira JW, McCarley RW, Strecker RE (2007) Sleep fragmentation elevates behavioral, electrographic and neurochemical measures of sleepiness. Neuroscience 146:1462–1473

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mercier F, Hatton GI (2001) Connexin 26 and basic fibroblast growth factor are expressed primarily in the subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity? J Comp Neurol 431:88–104

    PubMed  CAS  Google Scholar 

  • Metlaine A, Leger D, Choudat D (2005) Socioeconomic impact of insomnia in working populations. Ind Health 43:11–19

    PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, Bauer A (2007) Effect of aging on cerebral A1 adenosine receptors: a [18F]CPFPX PET study in humans. Neurobiol Aging 28:1914–1924

    PubMed  CAS  Google Scholar 

  • Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience 123:361–370

    PubMed  CAS  Google Scholar 

  • Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE (2001) Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441:302–323

    PubMed  CAS  Google Scholar 

  • Nagy JI, Lynn BD, Tress O, Willecke K, Rash JE (2011) Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 34:263–271

    PubMed  CAS  PubMed Central  Google Scholar 

  • Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S, Petillo PA (2012) Lactate as a biomarker for sleep. Sleep 35:1209–1222

    PubMed  PubMed Central  Google Scholar 

  • Netchiporouk L, Shram N, Salvert D, Cespuglio R (2001) Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur J Neurosci 13:1429–1434

    PubMed  CAS  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nofzinger EA, Buysse DJ, Miewald JM, Meltzer CC, Price JC, Sembrat RC, Ombao H, Reynolds CF, Monk TH, Hall M, Kupfer DJ, Moore RY (2002) Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain 125:1105–1115

    PubMed  Google Scholar 

  • Nutt D, Wilson S, Paterson L (2008) Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 10:329–336

    PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    PubMed  CAS  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oliet SH, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158:275–283

    PubMed  CAS  Google Scholar 

  • Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118:826–840

    PubMed  CAS  PubMed Central  Google Scholar 

  • Palchykova S, Winsky-Sommerer R, Shen HY, Boison D, Gerling A, Tobler I (2010) Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci 30:13157–13165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    PubMed  CAS  Google Scholar 

  • Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108:8467–8472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parpura V, Verkhratsky A (2012) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61:610–621

    PubMed  CAS  Google Scholar 

  • Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30:8061–8070

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63:93–102

    PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    PubMed  CAS  Google Scholar 

  • Petit JM, Tobler I, Kopp C, Morgenthaler F, Borbely AA, Magistretti PJ (2010) Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. Sleep 33:901–908

    PubMed  PubMed Central  Google Scholar 

  • Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    PubMed  CAS  Google Scholar 

  • Ram S, Seirawan H, Kumar SK, Clark GT (2010) Prevalence and impact of sleep disorders and sleep habits in the United States. Sleep Breath 14:63–70

    PubMed  Google Scholar 

  • Ramm P, Frost BJ (1986) Cerebral and local cerebral metabolism in the cat during slow wave and REM sleep. Brain Res 365:112–124

    PubMed  CAS  Google Scholar 

  • Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A 97:12880–12884

    PubMed  CAS  PubMed Central  Google Scholar 

  • Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    PubMed  CAS  Google Scholar 

  • Ribet C, Derriennic F (1999) Age, working conditions, and sleep disorders: a longitudinal analysis in the French cohort E.S.T.E.V. Sleep 22:491–504

    PubMed  CAS  Google Scholar 

  • Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80:224–232

    PubMed  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    PubMed  CAS  Google Scholar 

  • Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci U S A 108:18442–18446

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rozental R, Srinivas M, Spray DC (2001) How to close a gap junction channel. Efficacies and potencies of uncoupling agents. Methods Mol Biol 154:447–476

    PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423:288–293

    PubMed  CAS  Google Scholar 

  • Söhl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    PubMed  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    PubMed  CAS  Google Scholar 

  • Steriade M (2006) Neuronal substrates of spike-wave seizures and hypsarrhythmia in corticothalamic systems. Adv Neurol 97:149–154

    PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    PubMed  CAS  Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    PubMed  CAS  Google Scholar 

  • Urbano FJ, Leznik E, Llinas RR (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci U S A 104:12554–12559

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    PubMed  CAS  Google Scholar 

  • Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Parpura V, Rodriguez JJ (2011) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev 66:133–151

    PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Parpura V (2012) Neurotransmitters and integration in neuronal-astroglial networks. Neurochem Res 37:2326–2338

    PubMed  CAS  Google Scholar 

  • Voderholzer U, Guilleminault C (2012) Sleep disorders. Handb Clin Neurol 106:527–540

    PubMed  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    PubMed  CAS  Google Scholar 

  • Vyazovskiy VV, Cirelli C, Tononi G, Tobler I (2008) Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res Bull 75:591–597

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    PubMed  CAS  Google Scholar 

  • Wigren HK, Schepens M, Matto V, Stenberg D, Porkka-Heiskanen T (2007) Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience 147:811–823

    PubMed  CAS  Google Scholar 

  • Wigren HK, Rytkonen KM, Porkka-Heiskanen T (2009) Basal forebrain lactate release and promotion of cortical arousal during prolonged waking is attenuated in aging. J Neurosci 29:11698–11707

    PubMed  CAS  Google Scholar 

  • Wisor JP, Rempe MJ, Schmidt MA, Moore ME, Clegern WC (2012) Sleep slow-wave activity regulates cerebral glycolytic metabolism. Cereb Cortex 23:1978–1987

    PubMed  PubMed Central  Google Scholar 

  • Wulff K, Gatti S, Wettstein JG, Foster RG (2011) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599

    Google Scholar 

  • Yé ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  Google Scholar 

Download references

Acknowledgements

Works presented in this have been supported by the ANR grant AstroSleep NANR-12-BSV4-0013-01. The authors wish to thank Pr. P. Magistretti, Dr. J-M Petit, Pr. J. Mantz and Dr. S. Kandelam for helpful discussions related to Cx roles in the regulation of sleep-wake cycle .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Giaume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, X., Giaume, C. (2014). Astroglial Connexins as Elements of Sleep-Wake Cycle Regulation and Dysfunction. In: Parpura, V., Verkhratsky, A. (eds) Pathological Potential of Neuroglia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0974-2_18

Download citation

Publish with us

Policies and ethics