Skip to main content

General Pathophysiology of Neuroglia: Neurological and Psychiatric Disorders as Gliopathies

  • Chapter
  • First Online:
Pathological Potential of Neuroglia

Abstract

Astrocytes are responsible for the structural organization of the neural tissue, for neurogenesis and development of the central nervous system, for generation and maintenance of the blood- and cerebrospinal fluid-brain barriers, for homeostatic maintenance of neurotransmitters and ions, for synaptogenesis and metabolic support, for scavenging of reactive oxygen species and for regulation of local blood flow. Oligodendrocytes provide for the maintenance of interneuronal connectivity. Microglial cells exert multiple trophic effects and are actively involved in shaping the synaptic connections by removing silent or redundant synapses. NG2 cells receive synaptic inputs which might be fundamental for life-long control over myelinating capabilities of the brain tissue. In the periphery, satellite glia, enteric glia and olfactory ensheathing cells oversee various homeostatic functions, whereas Schwann cells support nerve impulse propagation. Homeostatic functions of neuroglia also extend to forming the defense of the nervous system. Every insult to the nerve tissue triggers glial homeostatic response and initiates specific glial defensive reaction. The homeostatic response is primarily neuroprotective. Neurological and psychiatric disorders are, conceptually, failures of such homeostatic responses in which neuroglia display a suboptimal function. Thus, neuroglia are ultimately involved in pathogenesis of many (if not all) brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benedetto B, Rupprecht R (2013) Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 11:171–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Blutstein T, Haydon PG (2013) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  • Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurother 7:452–470

    Article  CAS  Google Scholar 

  • Butterworth RF (2010) Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int 57:383–388

    Article  PubMed  CAS  Google Scholar 

  • Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng C, Sourial M, Doering LC (2012) Astrocytes and developmental plasticity in fragile X. Neural Plast 2012:197491

    PubMed  PubMed Central  Google Scholar 

  • Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  PubMed  CAS  Google Scholar 

  • Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338:491–495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gourine AV, Kasparov S (2011) Astrocytes as brain interoceptors. Exp Physiol 96:411–416

    PubMed  CAS  Google Scholar 

  • Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C (2009) Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia 58:148–156

    Article  Google Scholar 

  • Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 64:304–327

    Article  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  PubMed  CAS  Google Scholar 

  • Hercher C, Turecki G, Mechawar N (2009) Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res 43:947–961

    Article  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  PubMed  CAS  Google Scholar 

  • Kipp M, Victor M, Martino G, Franklin RJ (2012) Endogeneous remyelination: findings in human studies. CNS Neurol Disord Drug Targets 11:598–609

    Article  PubMed  CAS  Google Scholar 

  • Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miron VE, Kuhlmann T, Antel JP (2011) Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 1812:184–193

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ni M, Li X, Rocha JB, Farina M, Aschner M (2012) Glia and methylmercury neurotoxicity. J Toxicol Environ Health A 75:1091–1101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (eds) (2008) Astrocytes in (patho)physiology of the nervous system. Springer, New York

    Google Scholar 

  • Parpura V, Verkhratsky A (2013) Astrogliopathology: could nanotechnology restore aberrant calcium signaling and pathological astroglial remodeling? Biochim Biophys Acta 1833:1625–1631

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138

    Article  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Verkhratsky A (2011) Neuroglial roots of neurodegenerative diseases? Mol Neurobiol 43:87–96

    Article  PubMed  CAS  Google Scholar 

  • Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80:224–232

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seifert G, Steinhauser C (2013) Neuron-astrocyte signaling and epilepsy. Exp Neurol 244:4–10

    Article  PubMed  Google Scholar 

  • Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M (2007) Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54:59–72

    Article  PubMed  CAS  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Aschner M (2013) Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 14:23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Staats KA, Van Den Bosch L (2009) Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival. J Biol Phys 35:337–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmet hyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Ann Rev Neurosci 30:153–179

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurother 7:399–412

    Article  CAS  Google Scholar 

  • Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neurol 4:e00082

    Google Scholar 

  • Wang L, Gutmann DH, Roos RP (2011) Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet 20:286–293

    Article  PubMed  CAS  Google Scholar 

  • Williams MR, Hampton T, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M (2013) Astrocyte decrease in the subgenual cingulate and callosal genu in schizophrenia. Eur Arch Psychiatry Clin Neurosci 263:41–52

    Article  PubMed  Google Scholar 

  • Yeh CY, Vadhwana B, Verkhratsky A, Rodriguez JJ (2012) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neurol 3:271–279

    Article  Google Scholar 

  • Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Manoj K. Gottipati for comments on a previous version of the manuscript. Authors’ research was supported by Alzheimer’s Research Trust (UK) Programme Grant (ART/PG2004A/1) to A.V. and by the National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678) to V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verkhratsky, A., Parpura, V. (2014). General Pathophysiology of Neuroglia: Neurological and Psychiatric Disorders as Gliopathies. In: Parpura, V., Verkhratsky, A. (eds) Pathological Potential of Neuroglia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0974-2_1

Download citation

Publish with us

Policies and ethics