Skip to main content

Virtual Reality Reveals Mechanisms of Balance and Locomotor Impairments

  • Chapter
  • First Online:
Virtual Reality for Physical and Motor Rehabilitation

Abstract

This chapter reviews how VR can be used to investigate normal and disturbed mechanisms of balance and locomotor control. Loss of upright balance control resulting in falls is a major health problem for older adults and stroke survivors. Balance and mobility deficits arise not only from motor or sensory impairments but also from the inability to select and reweight pertinent sensory information. In particular, the role of the vestibular system and effects of age and stroke on the ability of the central nervous system to resolve sensory conflicts is emphasized, as well as the potential for rehabilitation protocols that include training in virtual environments to improve balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovich, S. V., Fluet, G. G., Merians, A. S., Mathai, A., & Qiu, Q. (2009). Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 512–520.

    PubMed Central  PubMed  Google Scholar 

  • Allum, J. H., Carpenter, M. G., Honegger, F., Adkin, A. L., & Bloem, B. R. (2002). Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. Journal of Physiology, 542, 643–663.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amblard, B., Cremieux, J., Marchand, A. R., & Carblanc, A. (1985). Lateral orientation and stabilization of human stance: static versus dynamic visual cues. Experimental Brain Research, 61, 21–37.

    CAS  PubMed  Google Scholar 

  • Aravind, G., & Lamontagne, A. (2012). Ability of subjects with post—stroke visuospatial neglect to avoid dynamic obstacles while walking in a virtual environment. In: 13th Research Colloquium in Rehabilitation, pp 5–6 Montreal.

    Google Scholar 

  • Asch, S. E., & Witkin, H. A. (1992). Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. Journal of Experimental Psychology: General, 121, 407–418. discussion 404–406.

    CAS  Google Scholar 

  • Ball, K., & Sekuler, R. (1986). Improving visual perception in older observers. Journal of Gerontology, 41, 176–182.

    CAS  PubMed  Google Scholar 

  • Bardy, B. G., Warren, W. H., Jr., & Kay, B. A. (1999). The role of central and peripheral vision in postural control during walking. Perception & Psychophysics, 61, 1356–1368.

    CAS  Google Scholar 

  • Berard, J. R., Fung, J., & Lamontagne, A. (2011). Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults. Journal of Neurophysiology, 106, 1089–1096.

    PubMed  Google Scholar 

  • Berard, J., Fung, J., & Lamontagne, A. (2012). Visuomotor control post stroke can be affected by a history of visuospatial neglect. Journal of Neurology & Neurophysiology, S8, 1–8.

    Google Scholar 

  • Berard, J. R., Fung, J., McFadyen, B. J., & Lamontagne, A. (2009). Aging affects the ability to use optic flow in the control of heading during locomotion. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 194, 183–190.

    Google Scholar 

  • Berard, J. R., & Vallis, L. A. (2006). Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 175, 21–31.

    Google Scholar 

  • Bergstrom, B. (1973). Morphology of the vestibular nerve. II. The number of myelinated vestibular nerve fibers in man at various ages. Acta Oto-Laryngologica, 76, 173–179.

    CAS  PubMed  Google Scholar 

  • Black, F. O., Wall, C., 3rd, & Nashner, L. M. (1983). Effects of visual and support surface orientation references upon postural control in vestibular deficient subjects. Acta Oto-Laryngologica, 95, 199–201.

    CAS  PubMed  Google Scholar 

  • Bles, W., Vianney de Jong, J. M., & de Wit, G. (1983). Compensation for labyrinthine defects examined by use of a tilting room. Acta Oto-Laryngologica, 95, 576–579.

    CAS  PubMed  Google Scholar 

  • Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age and Ageing, 26, 15–19.

    CAS  PubMed  Google Scholar 

  • Brandt, T., Glasauer, S., Stephan, T., Bense, S., Yousry, T. A., Deutschlander, A., et al. (2002). Visual-vestibular and visuovisual cortical interaction: new insights from fMRI and pet. Annals of the New York Academy of Sciences, 956, 230–241.

    PubMed  Google Scholar 

  • Bruggeman, H., Zosh, W., & Warren, W. H. (2007). Optic flow drives human visuo-locomotor adaptation. Current Biology, 17, 2035–2040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bugnariu, N., & Fung, J. (2007). Aging and selective sensorimotor strategies in the regulation of upright balance. Journal of Neuroengineering and Rehabilitation, 4, 19.

    PubMed Central  PubMed  Google Scholar 

  • Chardenon, A., Montagne, G., Laurent, M., & Bootsma, R. J. (2004). The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation? Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 158, 100–108.

    CAS  Google Scholar 

  • Chou, Y. H., Wagenaar, R. C., Saltzman, E., Giphart, J. E., Young, D., Davidsdottir, R., et al. (2009). Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 64, 222–231.

    PubMed  Google Scholar 

  • Clement, G., Gurfinkel, V. S., Lestienne, F., Lipshits, M. I., & Popov, K. E. (1984). Adaptation of postural control to weightlessness. Experimental Brain Research, 57, 61–72.

    CAS  PubMed  Google Scholar 

  • Cutting, J. E., & Vishton, P. M. (1995). How we avoid collisions with stationary and moving objects. Psychological Review, 102, 627–651.

    Google Scholar 

  • Darekar, A., Goussev, V., McFadyen, B. J., Lamontagne, A., & Fung, J. (2013). Spatial navigation in the presence of dynamic obstacles in a virtual environment: A preliminary study. International Conference on Virtual Rehabilitation, IEEE Conference Proceedings, 2 pages.

    Google Scholar 

  • Day, B. L., & Guerraz, M. (2007). Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion information. Journal of Physiology, 582, 153–161.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dichgans, J., Brandt, T., & Held, R. (1975). The role of vision in gravitational orientation. Fortschritte der Zoologie, 23, 255–263.

    CAS  PubMed  Google Scholar 

  • Dokka, K., Kenyon, R. V., & Keshner, E. A. (2009). Influence of visual scene velocity on segmental kinematics during stance. Gait & Posture, 30, 211–216.

    Google Scholar 

  • Dokka, K., Kenyon, R. V., Keshner, E. A., & Kording, K. P. (2010). Self versus environment motion in postural control. PLoS Computational Biology, 6, e1000680.

    PubMed Central  PubMed  Google Scholar 

  • Duchon, A. P., & Warren, W. H., Jr. (2002). A visual equalization strategy for locomotor control: of honeybees, robots, and humans. Psychological Science, 13, 272–278.

    PubMed  Google Scholar 

  • Dumontheil, I., Panagiotaki, P., & Berthoz, A. (2006). Dual adaptation to sensory conflicts during whole-body rotations. Brain Research, 1072, 119–132.

    CAS  PubMed  Google Scholar 

  • Dvorkin, A. Y., Kenyon, R. V., & Keshner, E. A. (2009). Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment. Experimental Brain Research, 193(1), 95–107.

    PubMed Central  PubMed  Google Scholar 

  • Fait, P., McFadyen, B. J., Swaine, B., & Cantin, J. F. (2009). Alterations to locomotor navigation in a complex environment at 7 and 30 days following a concussion in an elite athlete. Brain Injury, 23, 362–369.

    CAS  PubMed  Google Scholar 

  • Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology. Human Perception and Performance, 29, 343–362.

    PubMed  Google Scholar 

  • Ferman, L., Collewijn, H., Jansen, T. C., & Van den Berg, A. V. (1987). Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique. Vision Research, 27, 811–828.

    CAS  PubMed  Google Scholar 

  • Fink, P. W., Foo, P. S., & Warren, W. H. (2007). Obstacle avoidance during walking in real and virtual environments. ACM Transactions on Applied Perception, 4, 18.

    Google Scholar 

  • Fitzpatrick, R. C., Marsden, J., Lord, S. R., & Day, B. L. (2002). Galvanic vestibular stimulation evokes sensations of body rotation. Neuroreport, 13, 2379–2383.

    PubMed  Google Scholar 

  • Francois, M., Morice, A. H., Blouin, J., & Montagne, G. (2011). Age-related decline in sensory processing for locomotion and interception. Neuroscience, 172, 366–378.

    CAS  PubMed  Google Scholar 

  • Francois, M., Morice, A. H., Bootsma, R. J., & Montagne, G. (2011). Visual control of walking velocity. Neuroscience Research, 70, 214–219.

    PubMed  Google Scholar 

  • Gerin-Lajoie, M., Richards, C. L., Fung, J., & McFadyen, B. J. (2008). Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait & Posture, 27, 239–247.

    Google Scholar 

  • Gerin-Lajoie, M., Richards, C. L., & McFadyen, B. J. (2005). The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control, 9, 242–269.

    PubMed  Google Scholar 

  • Gerin-Lajoie, M., Richards, C. L., & McFadyen, B. J. (2006). The circumvention of obstacles during walking in different environmental contexts: a comparison between older and younger adults. Gait & Posture, 24, 364–369.

    Google Scholar 

  • Gibson, J. J. (1994). The visual perception of objective motion and subjective movement. 1954. Psychological Review, 101, 318–323.

    CAS  PubMed  Google Scholar 

  • Gill, J., Allum, J. H., Carpenter, M. G., Held-Ziolkowska, M., Adkin, A. L., Honegger, F., et al. (2001). Trunk sway measures of postural stability during clinical balance tests: effects of age. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56, M438–M447.

    CAS  Google Scholar 

  • Grasso, R., Glasauer, S., Takei, Y., & Berthoz, A. (1996). The predictive brain: anticipatory control of head direction for the steering of locomotion. Neuroreport, 7, 1170–1174.

    CAS  PubMed  Google Scholar 

  • Guerraz, M., & Bronstein, A. M. (2008). Mechanisms underlying visually induced body sway. Neuroscience Letters, 443, 12–16.

    CAS  PubMed  Google Scholar 

  • Guerraz, M., Gianna, C. C., Burchill, P. M., Gresty, M. A., & Bronstein, A. M. (2001). Effect of visual surrounding motion on body sway in a three-dimensional environment. Perception & Psychophysics, 63, 47–58.

    CAS  Google Scholar 

  • Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and vection in young and elderly adults. Gerontology, 55, 637–643.

    PubMed  Google Scholar 

  • Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(Suppl 2), ii7–ii11.

    PubMed  Google Scholar 

  • Horak, F. B., Nashner, L. M., & Diener, H. C. (1990). Postural strategies associated with somatosensory and vestibular loss. Experimental Brain Research, 82, 167–177.

    CAS  PubMed  Google Scholar 

  • Isableu, B., Ohlmann, T., Cremieux, J., & Amblard, B. (1997). Selection of spatial frame of reference and postural control variability. Experimental Brain Research, 114, 584–589.

    CAS  PubMed  Google Scholar 

  • Isableu, B., Ohlmann, T., Cremieux, J., Vuillerme, N., Amblard, B., & Gresty, M. A. (2010). Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control. Neuroscience, 169, 1199–1215.

    CAS  PubMed  Google Scholar 

  • Kang, H. K., Kim, Y., Chung, Y., & Hwang, S. (2012). Effects of treadmill training with optic flow on balance and gait in individuals following stroke: randomized controlled trials. Clinical Rehabilitation, 26, 246–255.

    PubMed  Google Scholar 

  • Keshner, E. A., Allum, J. H., & Honegger, F. (1993). Predictors of less stable postural responses to support surface rotations in healthy human elderly. Journal of Vestibular Research, 3, 419–429.

    CAS  PubMed  Google Scholar 

  • Keshner, E. A., Allum, J. H., & Pfaltz, C. R. (1987). Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Experimental Brain Research, 69, 77–92.

    CAS  PubMed  Google Scholar 

  • Keshner, E. A., & Dhaher, Y. (2008). Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects. Gait Posture, 28(1), 127–134.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keshner, E. A., Dokka, K., & Kenyon, R. V. (2006). Influences of the perception of self-motion on postural parameters. Cyberpsychology & Behavior, 9, 163–166.

    CAS  Google Scholar 

  • Keshner, E. A., & Kenyon, R. V. (2000). The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research, 10, 207–219.

    CAS  PubMed  Google Scholar 

  • Keshner, E. A., & Kenyon, R. V. (2004). Using immersive technology for postural research and rehabilitation. Assistive Technology, 16, 54–62.

    PubMed  Google Scholar 

  • Keshner, E. A., & Kenyon, R. V. (2009). Postural and spatial orientation driven by virtual reality. Studies in Health Technology and Informatics, 145, 209–228.

    PubMed Central  PubMed  Google Scholar 

  • Keshner, E., Kenyon, R.V., Dhaher, Y.Y., & Streepey, J.W. (2004a). Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. Internation conference on disability, Virtual reality, and Associated Technologies New College, Oxford, UK.

    Google Scholar 

  • Keshner, E. A., Kenyon, R. V., Dhaher, Y., & Streepey, J. (2005). Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. International Journal on Disability and Human Development, 4, 177–182.

    Google Scholar 

  • Keshner, E. A., Kenyon, R. V., & Langston, J. (2004). Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research, 14, 307–319.

    PubMed  Google Scholar 

  • Keshner, E. A., Slaboda, J. C., Buddharaju, R., Lanaria, L., & Norman, J. (2011). Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. IEEE Engineering in Medicine & Biology Society, 2011, 1379–1382.

    Google Scholar 

  • Kizony, R., Levin, M. F., Hughey, L., Perez, C., & Fung, J. (2010). Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Physical Therapy, 90, 252–260.

    PubMed  Google Scholar 

  • Kleinschmidt, A., Thilo, K. V., Buchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. (2002). Neural correlates of visual-motion perception as object- or self-motion. NeuroImage, 16, 873–882.

    PubMed  Google Scholar 

  • Konczak, J. (1994). Effects of optic flow on the kinematics of human gait: a comparison of young and older adults. Journal of Motor Behavior, 26, 225–236.

    CAS  PubMed  Google Scholar 

  • Kuno, S., Kawakita, T., Kawakami, O., Miyake, Y., & Watanabe, S. (1999). Postural adjustment response to depth direction moving patterns produced by virtual reality graphics. Japanese Journal of Physiology, 49, 417–424.

    CAS  PubMed  Google Scholar 

  • Lambrey, S., & Berthoz, A. (2003). Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. International Journal of Psychophysiology, 50, 101–115.

    PubMed  Google Scholar 

  • Lamontagne, A., Fung, J., McFadyen, B. J., & Faubert, J. (2007). Modulation of walking speed by changing optic flow in persons with stroke. Journal of Neuroengineering and Rehabilitation, 4, 22.

    PubMed Central  PubMed  Google Scholar 

  • Lamontagne, A., Fung, J., McFadyen, B., Faubert, J., & Paquette, C. (2010). Stroke affects locomotor steering responses to changing optic flow directions. Neurorehabilitation and Neural Repair, 24, 457–468.

    PubMed  Google Scholar 

  • Lamontagne, A., Fung, J., Paquette, C., Faubert, J., & McFadyen, B. J. (2005). Influence of optic flow on speed and heading control of locomotion due to ageing. Gait & Posture, 21(1), S18, 4.7.

    Google Scholar 

  • Lamontagne, A., Paquet, N., & Fung, J. (2003). Postural adjustments to voluntary head motions during standing are modified following stroke. Clinical Biomechanics (Bristol, Avon), 18, 832–842.

    Google Scholar 

  • Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology. Human Perception and Performance, 16, 295–302.

    CAS  PubMed  Google Scholar 

  • Lepecq, J. C., De Waele, C., Mertz-Josse, S., Teyssedre, C., Huy, P. T., Baudonniere, P. M., et al. (2006). Galvanic vestibular stimulation modifies vection paths in healthy subjects. Journal of Neurophysiology, 95, 3199–3207.

    PubMed  Google Scholar 

  • Lepecq, J. C., Giannopulu, I., Mertz, S., & Baudonniere, P. M. (1999). Vestibular sensitivity and vection chronometry along the spinal axis in erect man. Perception, 28, 63–72.

    CAS  PubMed  Google Scholar 

  • Lord, S. R., & Webster, I. W. (1990). Visual field dependence in elderly fallers and non-fallers. International Journal of Aging and Human Development, 31, 267–277.

    CAS  PubMed  Google Scholar 

  • Mahboobin, A., Loughlin, P. J., Redfern, M. S., & Sparto, P. J. (2005). Sensory re-weighting in human postural control during moving-scene perturbations. Experimental Brain Research, 167(2), 260–267.

    PubMed  Google Scholar 

  • Masumoto, D., Yamakawa, E., Kimoto, T., Nagata, S. (1994). Hierarchical sensory-motor fusion model with neural networks. In: Multisensor Fusion and Integration for Intelligent Systems, 1994 IEEE International Conference on MFI ‘94, pp 630–638 Las Vegas, NV, USA.

    Google Scholar 

  • McCollum, G. (1999). Sensory and motor interdependence in postural adjustments. Journal of Vestibular Research, 9, 303–325.

    CAS  PubMed  Google Scholar 

  • Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L., Jr., & Warren, W. H., Jr. (2007). Visual flow influences gait transition speed and preferred walking speed. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 181, 221–228.

    Google Scholar 

  • Mulavara, A. P., Richards, J. T., Ruttley, T., Marshburn, A., Nomura, Y., & Bloomberg, J. J. (2005). Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 166, 210–219.

    CAS  Google Scholar 

  • Nashner, L., & Berthoz, A. (1978). Visual contribution to rapid motor responses during postural control. Brain Research, 150(2), 403–407.

    Google Scholar 

  • Nomura, Y., Mulavara, A. P., Richards, J. T., Brady, R., & Bloomberg, J. J. (2005). Optic flow dominates visual scene polarity in causing adaptive modification of locomotor trajectory. Brain Research. Cognitive Brain Research, 25, 624–631.

    CAS  PubMed  Google Scholar 

  • Norman, J. F., Ross, H. E., Hawkes, L. M., & Long, J. R. (2003). Aging and the perception of speed. Perception, 32, 85–96.

    PubMed  Google Scholar 

  • O’Neill, D. E., Gill-Body, K. M., & Krebs, D. E. (1998). Posturography changes do not predict functional performance changes. American Journal of Otology, 19, 797–803.

    PubMed  Google Scholar 

  • Ouellette, M., Chagnon, M., & Faubert, J. (2009). Evaluation of human behavior in collision avoidance: A study inside immersive virtual reality. Cyberpsychology & Behavior : The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 12, 215–218.

    Google Scholar 

  • Pailhous, J., Ferrandez, A. M., Fluckiger, M., & Baumberger, B. (1990). Unintentional modulations of human gait by optical flow. Behavioural Brain Research, 38, 275–281.

    CAS  PubMed  Google Scholar 

  • Paquette, M. R., & Vallis, L. A. (2010). Age-related kinematic changes in late visual-cueing during obstacle circumvention. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 203, 563–574.

    Google Scholar 

  • Patla, A. E., Adkin, A., & Ballard, T. (1999). Online steering: coordination and control of body center of mass, head and body reorientation. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 129, 629–634.

    CAS  Google Scholar 

  • Peterka, R. J., Black, F. O., & Schoenhoff, M. B. (1990a). Age-related changes in human vestibulo-ocular and optokinetic reflexes: pseudorandom rotation tests. Journal of Vestibular Research, 1, 61–71.

    PubMed  Google Scholar 

  • Peterka, R. J., Black, F. O., & Schoenhoff, M. B. (1990b). Age-related changes in human vestibulo-ocular reflexes: sinusoidal rotation and caloric tests. Journal of Vestibular Research, 1, 49–59.

    PubMed  Google Scholar 

  • Previc, F. H. (1992). The effects of dynamic visual stimulation on perception and motor control. Journal of Vestibular Research, 2, 285–295.

    CAS  PubMed  Google Scholar 

  • Previc, F. H., & Donnelly, M. (1993). The effects of visual depth and eccentricity on manual bias, induced motion, and vection. Perception, 22, 929–945.

    CAS  PubMed  Google Scholar 

  • Previc, F. H., Kenyon, R. V., Boer, E. R., & Johnson, B. H. (1993). The effects of background visual roll stimulation on postural and manual control and self-motion perception. Perception & Psychophysics, 54, 93–107.

    CAS  Google Scholar 

  • Prokop, T., Schubert, M., & Berger, W. (1997). Visual influence on human locomotion. Modulation to changes in optic flow. Experimental Brain Research, 114, 63–70.

    CAS  PubMed  Google Scholar 

  • Punt, T. D., Kitadono, K., Hulleman, J., Humphreys, G. W., & Riddoch, M. J. (2008). From both sides now: crossover effects influence navigation in patients with unilateral neglect. Journal of Neurology, Neurosurgery and Psychiatry, 79, 464–466.

    CAS  PubMed  Google Scholar 

  • Qiu, Q., Fluet, G. G., Saleh, S., Lafond, I., Merians, A. S., & Adamovich, S. V. (2010). Integrated versus isolated training of the hemiparetic upper extremity in haptically rendered virtual environments. Conference proceedings IEEE Engineering in Medicine & Biology Society, 2010, 2255–2258.

    Google Scholar 

  • Redfern, M. S., & Furman, J. M. (1994). Postural sway of patients with vestibular disorders during optic flow. Journal of Vestibular Research, 4, 221–230.

    CAS  PubMed  Google Scholar 

  • Reymond, G., Droulez, J., & Kemeny, A. (2002). Visuovestibular perception of self-motion modeled as a dynamic optimization process. Biological Cybernetics, 87, 301–314.

    PubMed  Google Scholar 

  • Rosenhall, U. (1973). Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Oto-Laryngologica, 76, 208–220.

    CAS  PubMed  Google Scholar 

  • Rushton, S. K., Harris, J. M., Lloyd, M. R., & Wann, J. P. (1998). Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology, 8, 1191–1194.

    CAS  PubMed  Google Scholar 

  • Saibene, F., & Minetti, A. E. (2003). Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology, 88, 297–316.

    PubMed  Google Scholar 

  • Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1–3), 35–54.

    Google Scholar 

  • Sarre, G., Berard, J., Fung, J., & Lamontagne, A. (2008). Steering behaviour can be modulated by different optic flows during walking. Neuroscience Letters, 436, 96–101.

    CAS  PubMed  Google Scholar 

  • Saunders, J. A., & Durgin, F. H. (2011). Adaptation to conflicting visual and physical heading directions during walking. Journal of Vision, 11.

    Google Scholar 

  • Schneider, E., Jahn, K., Dieterich, M., Brandt, T., & Strupp, M. (2008). Gait deviations induced by visual stimulation in roll. Experimental brain research Experimentelle Hirnforschung Experimentation Cerebrale, 185, 21–26.

    Google Scholar 

  • Schubert, M., Prokop, T., Brocke, F., & Berger, W. (2005). Visual kinesthesia and locomotion in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 20, 141–150.

    Google Scholar 

  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.

    CAS  PubMed  Google Scholar 

  • Shumway-Cook, A., & Woollacott, M. (2000). Attentional demands and postural control: the effect of sensory context. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 55, M10–M16.

    CAS  Google Scholar 

  • Silsupadol, P., Lugade, V., Shumway-Cook, A., van Donkelaar, P., Chou, L. S., Mayr, U., et al. (2009). Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait & Posture, 29, 634–639.

    Google Scholar 

  • Silsupadol, P., Shumway-Cook, A., Lugade, V., van Donkelaar, P., Chou, L. S., Mayr, U., et al. (2009). Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 90, 381–387.

    PubMed Central  PubMed  Google Scholar 

  • Simoneau, M., Teasdale, N., Bourdin, C., Bard, C., Fleury, M., & Nougier, V. (1999). Aging and postural control: postural perturbations caused by changing the visual anchor. Journal of American Geriatrics Society, 47, 235–240.

    CAS  Google Scholar 

  • Siu, K. C., Chou, L. S., Mayr, U., Donkelaar, P., & Woollacott, M. H. (2008). Does inability to allocate attention contribute to balance constraints during gait in older adults? Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63, 1364–1369.

    Google Scholar 

  • Siu, K. C., Chou, L. S., Mayr, U., van Donkelaar, P., & Woollacott, M. H. (2009). Attentional mechanisms contributing to balance constraints during gait: the effects of balance impairments. Brain Research, 1248, 59–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slaboda, J. C., Lauer, R. T., & Keshner, E. A. (2011). Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt. Experimental Brain Research, 211(1), 87–96.

    PubMed Central  PubMed  Google Scholar 

  • Slobounov, S., Tutwiler, R., Sebastianelli, W., & Slobounov, E. (2006). Alteration of postural responses to visual field motion in mild traumatic brain injury. Neurosurgery, 59, 134–139. discussion 134-139.

    PubMed  Google Scholar 

  • Snowden, R. J., & Kavanagh, E. (2006). Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35, 9–24.

    PubMed  Google Scholar 

  • Sparto, P. J., Redfern, M. S., Jasko, J. G., Casselbrant, M. L., Mandel, E. M., & Furman, J. M. (2006). The influence of dynamic visual cues for postural control in children aged 7-12 years. Experimental Brain Research, 168(4), 505–516. PMID: 16151780.

    Google Scholar 

  • Stelmach, G. E., Zelaznik, H. N., & Lowe, D. (1990). The influence of aging and attentional demands on recovery from postural instability. Aging (Milano), 2, 155–161.

    CAS  Google Scholar 

  • Straube, A., Krafczyk, S., Paulus, W., & Brandt, T. (1994). Dependence of visual stabilization of postural sway on the cortical magnification factor of restricted visual fields. Experimental Brain Research, 99, 501–506.

    CAS  PubMed  Google Scholar 

  • Streepey, J. W., Kenyon, R. V., & Keshner, E. A. (2007). Field of view and base of support width influence postural responses to visual stimuli during quiet stance. Gait & Posture, 25(1), 49–55.

    Google Scholar 

  • Tanahashi, S., Ujike, H., Kozawa, R., & Ukai, K. (2007). Effects of visually simulated roll motion on vection and postural stabilization. Journal of Neuroengineering and Rehabilitation, 4, 39.

    PubMed Central  PubMed  Google Scholar 

  • Taylor, C. R., Heglund, N. C., & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. The Journal of Experimental Biology, 97, 1–21.

    CAS  PubMed  Google Scholar 

  • Thurrell, A. E., & Bronstein, A. M. (2002). Vection increases the magnitude and accuracy of visually evoked postural responses. Experimental Brain Research, 147, 558–560.

    CAS  PubMed  Google Scholar 

  • Vaina, L. M., Sikoglu, E. M., Soloviev, S., LeMay, M., Squatrito, S., Pandiani, G., et al. (2010). Functional and anatomical profile of visual motion impairments in stroke patients correlate with fMRI in normal subjects. Journal of Neuropsychology, 4, 121–145.

    PubMed Central  PubMed  Google Scholar 

  • Varraine, E., Bonnard, M., & Pailhous, J. (2002). Interaction between different sensory cues in the control of human gait. Experimental Brain Research, 142, 374–384.

    PubMed  Google Scholar 

  • Verhoeff, L. L., Horlings, C. G., Janssen, L. J., Bridenbaugh, S. A., & Allum, J. H. (2009). Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait & Posture, 30, 76–81.

    Google Scholar 

  • Vidal, P. P., Berthoz, A., & Millanvoye, M. (1982). Difference between eye closure and visual stabilization in the control of posture in man. Aviation, Space, and Environmental Medicine, 53(2), 166–170.

    Google Scholar 

  • Wang, Y., Kenyon, R. V., & Keshner, E. A. (2009). Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Experimental Brain Research, 201(4), 663–672.

    Google Scholar 

  • Warren, B. R. (1998). Visually Controlled Locomotion: 40 years Later. Ecological Psychology, 10, 177.

    Google Scholar 

  • Warren, W. H., Jr., Blackwell, A. W., & Morris, M. W. (1989). Age differences in perceiving the direction of self-motion from optical flow. Journal of Gerontology, 44, P147–P153.

    PubMed  Google Scholar 

  • Warren, W. H., Jr., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213–216.

    CAS  PubMed  Google Scholar 

  • Webster, J. S., Rapport, L. J., Godlewski, M. C., & Abadee, P. S. (1994). Effect of attentional bias to right space on wheelchair mobility. Journal of Clinical and Experimental Neuropsychology, 16, 129–137.

    CAS  PubMed  Google Scholar 

  • Welford, A. T. (1988). Reaction time, speed of performance, and age. Annals of the New York Academy of Sciences, 515, 1–17.

    Google Scholar 

  • Whitney, S. L., Sparto, P. J., Brown, K., Furman, J. M., Jacobson, J. L., & Redfern, M. S. (2002). The potential use of virtual reality in vestibular rehabilitation: Preliminary findings with the BNAVE. Neurology Report, 26(2), 72–78.

    Google Scholar 

  • Wiest, G., Amorim, M. A., Mayer, D., Schick, S., Deecke, L., & Lang, W. (2001). Cortical responses to object-motion and visually-induced self-motion perception. Brain Research. Cognitive Brain Research, 12, 167–170.

    CAS  PubMed  Google Scholar 

  • Witkin, H. A., & Asch, S. E. (1948). Studies in space orientation; further experiments on perception of the upright with displaced visual fields. Journal of Experimental Psychology, 38, 762–782.

    CAS  PubMed  Google Scholar 

  • Woollacott, M. H. (1993). Age-related changes in posture and movement. Journal of Gerontology, 48, 56–60.

    PubMed  Google Scholar 

  • Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs. Journal of Vestibular Research, 15, 185–195.

    CAS  PubMed  Google Scholar 

  • Wrisley, D. M., Stephens, M. J., Mosley, S., Wojnowski, A., Duffy, J., & Burkard, R. (2007). Learning effects of repetitive administrations of the sensory organization test in healthy young adults. Archives of Physical Medicine and Rehabilitation, 88, 1049–1054.

    PubMed  Google Scholar 

  • Zaidel, A., Turner, A. H., & Angelaki, D. E. (2011). Multisensory calibration is independent of cue reliability. Journal of Neuroscience, 31, 13949–13962.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH-NIA grants AG16359 and AG26470 to E.A. Keshner and the Canadian Institutes of Health Research (CIHR, RMF-111622) and the Jewish Rehabilitation Hospital Foundation to J. Fung. A. Lamontagne was supported by CIHR (MOP- 77548) and the Canada Foundation for Innovation. A.L. and J.F. are researchers of the Multidisciplinary SensoriMotor Rehabilitation Research Team [http://www.errsm.ca/], an emerging research team in Regenerative Medicine and Nanomedicine funded by the CIHR. N. Bugariu was funded by a Tomlinson postdoctoral research fellowship award at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouk Lamontagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lamontagne, A., Keshner, E.A., Bugnariu, N., Fung, J. (2014). Virtual Reality Reveals Mechanisms of Balance and Locomotor Impairments. In: Weiss, P., Keshner, E., Levin, M. (eds) Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0968-1_9

Download citation

Publish with us

Policies and ethics