Skip to main content

Lessons on Kidney Development from Experimental Studies

  • Chapter
  • First Online:
Kidney Development in Renal Pathology

Abstract

The development of human kidney is a complex process requiring intricate cell and tissue interactions to assure the concerted program of cell growth, differentiation, and morphogenesis. Although the molecular and cellular nature of each of these interactions remains currently unclear, significant findings regarding nephrogenesis and its completion among different animal species have been reported over the last two decades. Research so far indicates that there are differences regarding the completion of the process of nephrogenesis among different animal species. In human, sheep, and spiny mouse, nephrogenesis is completed prior to birth, while in rat, mouse, and swine, nephrogenesis continuous after birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerosa C, Fanos V, Fanni D, Nemolato S, Locci A, Xanthos T, Papalois A, Faa G, Iacovidou N. Towards nephrogenesis in the pig kidney: the composite tubule-glomerular nodule. J Matern Fetal Neonatal Med. 2011;24 Suppl 2:52–4.

    PubMed  Google Scholar 

  2. Ratliff B, Rodebaugh J, Sekulic M, Solhaug M. Glomerular eNOS gene expression during postnatal maturation and AT1 receptor inhibition. Pediatr Nephrol. 2007;22:1135–42.

    PubMed  Google Scholar 

  3. Moritz KM, Wintour EM. Functional development of the meso- and metanephros. Pediatr Nephrol. 1999;13:171–8.

    CAS  PubMed  Google Scholar 

  4. Dickinson H, Walker DW, Cullen-McEwen L, Wintour EM, Moritz K. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol Renal Physiol. 2005;289:F273–9.

    CAS  PubMed  Google Scholar 

  5. Pohlenz JF, Winter KR, Dean-Nystrom EA. Shiga-toxigenic Escherichia coli-inoculated neonatal piglets develop kidney lesions that are comparable to those in humans with hemolytic-uremic syndrome. Infect Immun. 2005;73:612–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Yu B, Li S, Lin Z. Changes in β1 integrin in renal tubular epithelial cells after intrauterine asphyxia of rabbit pups. J Perinat Med. 2009;37:59–65.

    CAS  PubMed  Google Scholar 

  7. Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol. 2006;291:325–39.

    CAS  PubMed  Google Scholar 

  8. Dressler GR. Epigenetics, development, and the kidney. J Am Soc Nephrol. 2008;19:2060–7.

    CAS  PubMed  Google Scholar 

  9. Piludu M, Fanos V, Congiu T, Piras M, Gerosa C, Mocci C, Fanni D, Nemolato S, Muntoni S, Iacovidou N, Faa G. The pine-cone body: an intermediate structure between the cap mesenchyme and the renal vesicle in the developing nod mouse kidney revealed by an ultrastructural study. J Matern Fetal Neonatal Med. 2012;25 Suppl 5:72–5.

    PubMed  Google Scholar 

  10. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, Fanos V. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol. 2012;227:1257–68.

    CAS  PubMed  Google Scholar 

  11. Faa GGC, Fanni D, Nemolato S, Monga G, Fanos V. Kidney embryogenesis: how to look at old things with new eyes. In: Fanos VCR, Faa G, Cataldi L, editors. Developmental nephrology: from embryology to metabolomics. Quartu Sant’Elena: Hygeia Press; 2011. p. 23–45.

    Google Scholar 

  12. Ben-Ze’ev A. Animal cell shape changes and gene expression. Bioessays. 1991;13:207–12.

    PubMed  Google Scholar 

  13. Ben-Ze’ev A. The role of changes in cell shape and contacts in the regulation of cytoskeleton expression during differentiation. J Cell Sci Suppl. 1987;8:293–312.

    PubMed  Google Scholar 

  14. Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA. 2010;1:415–31.

    CAS  PubMed  Google Scholar 

  15. Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372:679–83.

    CAS  PubMed  Google Scholar 

  16. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125(21):4225–34.

    CAS  PubMed  Google Scholar 

  17. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9:2795–807.

    CAS  PubMed  Google Scholar 

  18. Koseki C, Herzlinger D, Al-Awqati Q. Apoptosis in metanephric development. J Cell Biol. 1992;119:1327–33.

    CAS  PubMed  Google Scholar 

  19. Luo G, Hofman C, Bronckers ALLJ, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is required for eye development and skeletal patterning. Genes Dev. 1995;9:2808–20.

    CAS  PubMed  Google Scholar 

  20. Perantoni AO. Induction of tubules in rat metanephrogenic mesenchyme in the absence of an inductive tissue. Differentiation. 1991;48:25–31.

    CAS  PubMed  Google Scholar 

  21. Perantoni AO, Dove LF, Karavanova I. Basic fibroblast growth factor can mediate the early inductive events in renal development. Proc Natl Acad Sci U S A. 1995;92:4696–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Vukicevic S, Kopp JB, Luyten FP, Sampath TK. Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci U S A. 1996;93:9021–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Weller A, Sorodin L, Illgen E-M, Ekblom P. Development and growth of mouse embryonic kidney in organ culture and modulation of developmental by soluble growth factor. Dev Biol. 1991;144:248–61.

    CAS  PubMed  Google Scholar 

  24. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    CAS  PubMed  Google Scholar 

  25. Lacunza E, Ferretti V, Barbeito C, Segal-Eiras A, Croce MV. Immunohistochemical evidence of Muc1 expression during rat embryonic development. Eur J Histochem. 2010;54(4):e49.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Braga VMM, Pemberton LF, Duhig T, Gendler SJ. Spatial and temporal expression of an epithelial mucin, Muc-1, during mouse development. Development. 1992;115:427–37.

    CAS  PubMed  Google Scholar 

  27. Lacunza E, Bara J, Segal-Eiras A, Croce MV. Expression of conserved mucin domains by epithelial tissues in various mammalian species. Res Vet Sci. 2009;86:68–77.

    CAS  PubMed  Google Scholar 

  28. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A. Characterization of a multicomponent receptor for GDNF. Nature. 1996;382:80–3.

    CAS  PubMed  Google Scholar 

  29. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci U S A. 1996;93:10657–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124:4077–87.

    CAS  PubMed  Google Scholar 

  31. Pepicelli CV, Kispert A, Rowitch DH, McMahon AP. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997;192:193–8.

    CAS  PubMed  Google Scholar 

  32. Towers PR, Woolf AS, Hardman P. Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro. Exp Nephrol. 1998;6:337–51.

    CAS  PubMed  Google Scholar 

  33. Mackenzie HS, Lawler EV, Brenner BM. Congenital oligonephropathy: the fetal flaw in essential hypertension? Kidney Int Suppl. 1996;55:S30–4.

    CAS  PubMed  Google Scholar 

  34. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    CAS  PubMed  Google Scholar 

  35. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. GDNF is required for kidney development and enteric innervation. Cold Spring Harb Symp Quant Biol. 1996;61:445–57.

    CAS  PubMed  Google Scholar 

  36. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.

    CAS  PubMed  Google Scholar 

  37. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:70–3.

    CAS  PubMed  Google Scholar 

  38. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    CAS  PubMed  Google Scholar 

  39. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson Jr EM, Milbrandt J. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21:317–24.

    CAS  PubMed  Google Scholar 

  40. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21:53–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cullen-McEwen LA, Drago J, Bertram JF. Nephron endowment in glial cell line-derived neurotrophic factor (GDNF) heterozygous mice. Kidney Int. 2001;60:31–6.

    CAS  PubMed  Google Scholar 

  42. Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF. Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension. 2003;41(2):335–40.

    CAS  PubMed  Google Scholar 

  43. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure: less of one, more the other? Am J Hypertens. 1988;1:335–47.

    CAS  PubMed  Google Scholar 

  44. Langley-Evans SC, Welham SJM, Sherman RC, Jackson AA. Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin Sci (Lond). 1996;91:607–15.

    CAS  Google Scholar 

  45. Manning J, Vehaskari VM. Low birth weight-associated adult hypertension in the rat. Pediatr Nephrol. 2001;16:417–22.

    CAS  PubMed  Google Scholar 

  46. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59:238–45.

    CAS  PubMed  Google Scholar 

  47. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49:460–7.

    CAS  PubMed  Google Scholar 

  48. Dodic M, May CN, Wintour EM, Coghlan JP. An early prenatal exposure to excess glucocorticoid levels leads to hypertensive offspring in sheep. Clin Sci (Lond). 1998;94:149–55.

    CAS  Google Scholar 

  49. Ortiz LA, Quan A, Weinberg A, Baum M. Effect of prenatal dexamethasone on rat renal development. Kidney Int. 2001;59:1663–9.

    CAS  PubMed  Google Scholar 

  50. Manning J, Beutler K, Knepper MA, Vehaskari VM. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2002;283(1):F202–6.

    CAS  PubMed  Google Scholar 

  51. Wang XY, Masilamani S, Nielsen J, Kwon TH, Brooks HL, Nielsen S, Knepper MA. The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon. J Clin Invest. 2001;108:215–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Langley-Evans SC. Maternal carbenoxolone treatment lowers birthweight and induces hypertension in the offspring of rats fed a protein-replete diet. Clin Sci (Lond). 1997;93:423–9.

    CAS  Google Scholar 

  53. Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan A, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod. 1998;13:799–804.

    CAS  PubMed  Google Scholar 

  54. Celsi G, Nishi A, Akusjarvi G, Aperia A. Abundance of Na+-K+-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol. 1991;260:F192–7.

    CAS  PubMed  Google Scholar 

  55. Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993;306:422–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Boubred F, Buffat C, Feuerstein JM, Daniel L, Tsimaratos M, Oliver C, Lelièvre-Pégorier M, Simeoni U. Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol. 2007;293(6):F1944–9.

    CAS  PubMed  Google Scholar 

  57. Beltowski J, Jamroz-Wisniewska A, Borkowska E, Wojcicka G. Upregulation of renal Na, K ATPase: the possible novel mechanism of leptin-induced hypertension. Pol J Pharmacol. 2004;56:213–22.

    CAS  PubMed  Google Scholar 

  58. Doyle LW, Faber B, Callanan C, Morley R. Blood pressure in late adolescence and very low birth weight. Pediatrics. 2003;111:252–7.

    PubMed  Google Scholar 

  59. Hoy WE, Hughson MD, Bertram JF, Douglas-Denton R, Amann K. Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol. 2005;16:2557–64.

    PubMed  Google Scholar 

  60. Johansson S, Iliadou A, Bergvall N, Tuvemo T, Norman M, Cnattingius S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation. 2005;112:3430–6.

    PubMed  Google Scholar 

  61. Keijzer-Veen MG, Finken MJ, Nauta J, Dekker FW, Hille ET, Frolich M, Wit JM, van der Heijden AJ, Dutch POPS19 Collaborative Study Group. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in The Netherlands. Pediatrics. 2005;116:725–31.

    PubMed  Google Scholar 

  62. You S, Götz F, Rohde W, Dörner G. Early postnatal overfeeding and diabetes susceptibility. Exp Clin Endocrinol. 1990;96:301–6.

    CAS  PubMed  Google Scholar 

  63. Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, Dorner G. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome X-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836:146–55.

    CAS  PubMed  Google Scholar 

  64. Shinozaki K, Kashiwagi A, Masada M, Okamura T. Molecular mechanisms of impaired endothelial function associated with insulin resistance. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:1–11.

    CAS  PubMed  Google Scholar 

  65. Puddu M, Fanos V, Podda F, Zaffanello M. The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am J Nephrol. 2009;30(2):162–70.

    PubMed  Google Scholar 

  66. Bhat PV, Manolescu DC. Role of vitamin A in determining nephron mass and possible relationship to hypertension. J Nutr. 2008;138:1407–10.

    CAS  PubMed  Google Scholar 

  67. Lelièvre-Pégorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Bénichou C. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–62.

    PubMed  Google Scholar 

  68. Makrakis J, Zimanyi MA, Black MJ. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol. 2007;22:1861–7.

    PubMed  Google Scholar 

  69. Vilar J, Gilbert T, Moreau E, Merlet-Benichou C. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int. 1996;49:1478–87.

    CAS  PubMed  Google Scholar 

  70. Moreau E, Vilar J, Lelievre-Pegorier M, Merlet-Benichou C, Gilbert T. Regulation of c-ret expression by retinoic acid in rat metanephros: implication in nephron mass control. Am J Physiol. 1998;275:F938–45.

    CAS  PubMed  Google Scholar 

  71. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999;126:1139–48.

    CAS  PubMed  Google Scholar 

  72. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, Costantini F, Mendelsohn C. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27:74–8.

    CAS  PubMed  Google Scholar 

  73. Welham SJ, Wade A, Woolf AS. Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int. 2002;61:1231–42.

    CAS  PubMed  Google Scholar 

  74. Petry CJ, Jennings BJ, James LA, Hales CN, Ozanne SE. Suckling a protein-restricted rat dam leads to diminished albuminuria in her male offspring in adult life: a longitudinal study. BMC Nephrol. 2006;7:14.

    PubMed Central  PubMed  Google Scholar 

  75. Tarry-Adkins JL, Joles JA, Chen JH, Martin-Gronert MS, van der Giezen DM, Goldschmeding R, Hales CN, Ozanne SE. Protein restriction in lactation confers nephroprotective effects in the male rat and is associated with increased antioxidant expression. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1259–66.

    CAS  PubMed  Google Scholar 

  76. Langley-Evans SC, Welham SJ, Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci. 1999;64(11):965–74.

    CAS  PubMed  Google Scholar 

  77. Nwagwu MO, Cook A, Langley-Evans SC. Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr. 2000;83(1):79–85.

    CAS  PubMed  Google Scholar 

  78. Holemans K, Gerber R, Meurrens K, De Clerck F, Poston L, Van Assche FA. Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr. 1999;81(1):73–9.

    CAS  PubMed  Google Scholar 

  79. Koukkou E, Lowy C, Poston L. The offspring of diabetic rats fed a high saturated fat diet demonstrate abnormal vascular function. J Soc Gynecol Investig. 1997;4:115A. Abstr.

    Google Scholar 

  80. Holemans K, Gerber RT, Van Assche FA, Poston L. Adult offspring from diabetic Wistar rats show abnormal endotheliumdependent relaxation and reduced heart rate. J Vasc Res. 1998;35 Suppl 1:6. Abstr.

    Google Scholar 

  81. Brawley L, Itoh S, Torrens C, Barker A, Bertram C, Poston L, Hanson M. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54(1):83–90.

    CAS  PubMed  Google Scholar 

  82. Franco Mdo C, Arruda RM, Fortes ZB, de Oliveira SF, Carvalho MH, Tostes RC, Nigro D. Severe nutritional restriction in pregnant rats aggravates hypertension, altered vascular reactivity, and renal development in spontaneously hypertensive rats offspring. J Cardiovasc Pharmacol. 2002;39(3):369–77.

    PubMed  Google Scholar 

  83. Alves GM, Barão MA, Odo LN, Nascimento Gomes G, Franco Md Mdo C, Nigro D, Lucas SR, Laurindo FR, Brandizzi LI, Zaladek Gil F. l-Arginine effects on blood pressure and renal function of intrauterine restricted rats. Pediatr Nephrol. 2002;17(10):856–62.

    PubMed  Google Scholar 

  84. Gil FZ, Lucas SR, Gomes GN, Cavanal Mde F, Coimbra TM. Effects of intrauterine food restriction and long-term dietary supplementation with l-arginine on age-related changes in renal function and structure of rats. Pediatr Res. 2005;57(5 Pt 1):724–31.

    CAS  PubMed  Google Scholar 

  85. Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA, Joles JA. Perinatal l-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension. 2004;44(1):83–8.

    CAS  PubMed  Google Scholar 

  86. de Queiroz DB, Ramos-Alves FE, Fernandes RL, Zuzu CP, Duarte GP, Xavier FE. Perinatal l-arginine and antioxidant supplements reduce adult blood pressure but not ameliorate the altered vascular function in spontaneously hypertensive rats. J Physiol Biochem. 2010;66(4):301–9.

    PubMed  Google Scholar 

  87. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–202.

    CAS  PubMed  Google Scholar 

  88. Franco Mdo C, Akamine EH, Di Marco GS, Casarini DE, Fortes ZB, Tostes RC, Carvalho MH, Nigro D. NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin–angiotensin system. Cardiovasc Res. 2003;59(3):767–75.

    PubMed  Google Scholar 

  89. Manning Jr RD, Hu L, Reckelhoff JF. Role of nitric oxide in arterial pressure and renal adaptations to long-term changes in sodium intake. Am J Physiol. 1997;272:R1162–9.

    CAS  PubMed  Google Scholar 

  90. Manning Jr RD, Hu L, Mizelle HL, Montani JP, Norton MW. Cardiovascular responses to long-term blockade of nitric oxide synthesis. Hypertension. 1993;22:40–8.

    CAS  PubMed  Google Scholar 

  91. Tan DY, Meng S, Manning Jr RD. Role of neuronal nitric oxide synthase in Dahl salt-sensitive hypertension. Hypertension. 1999;33:456–61.

    CAS  PubMed  Google Scholar 

  92. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion plays a role in the breakdown of endothelium-derived relaxing factor. Nature. 1986;320:454–6.

    CAS  PubMed  Google Scholar 

  93. Garvin JL, Ortiz PA. The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand. 2003;179:225–32.

    CAS  PubMed  Google Scholar 

  94. Vaziri ND, Wang XQ, Oveisi F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000;36(1):142–6.

    CAS  PubMed  Google Scholar 

  95. Vaziri ND, Ni Z, Oveisi F, Trnavsky-Hobbs DL. Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats. Hypertension. 2000;36(6):957–64.

    CAS  PubMed  Google Scholar 

  96. Wesseling S, Joles JA, van Goor H, Bluyssen HA, Kemmeren P, Holstege FC, Koomans HA, Braam B. Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats. Physiol Genomics. 2007;28(2):158–67.

    CAS  PubMed  Google Scholar 

  97. Vaziri ND, Ni Z, Oveisi F. Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension. 1998;31(6):1248–54.

    CAS  PubMed  Google Scholar 

  98. Meng S, Roberts LJ, Cason GW, Curry TS, Manning Jr RD. Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats. Am J Physiol. 2002;283:R732–8.

    CAS  Google Scholar 

  99. Meng S, Cason GW, Gannon AWRL, Manning Jr RD. Oxidative stress in Dahl salt-sensitive hypertension. Hypertension. 2003;41:1346–52.

    CAS  PubMed  Google Scholar 

  100. Tian N, Thrasher KD, Gundy PD, Hughson MD, Manning Jr RD. Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Hypertension. 2005;45:934–9.

    CAS  PubMed  Google Scholar 

  101. Schnackenberg CG, Welch WJ, Wilcox CS. TP receptor-mediated vasoconstriction in microperfused afferent arterioles: roles of O(2)(−) and NO. Am J Physiol. 2000;279:F302–8.

    CAS  Google Scholar 

  102. Zou AP, Li N, Cowley Jr AW. Production and actions of superoxide in the renal medulla. Hypertension. 2001;37:547–53.

    CAS  PubMed  Google Scholar 

  103. Lounsbury KM, Hu Q, Ziegelstein RC. Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med. 2000;28:1362–9.

    CAS  PubMed  Google Scholar 

  104. Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep. 2000;2:98–105.

    CAS  PubMed  Google Scholar 

  105. Franco Mdo C, Akamine EH, Aparecida de Oliveira M, Fortes ZB, Tostes RC, Carvalho MH, Nigro D. Vitamins C and E improve endothelial dysfunction in intrauterine-undernourished rats by decreasing vascular superoxide anion concentration. J Cardiovasc Pharmacol. 2003;42(2):211–7.

    PubMed  Google Scholar 

  106. Ding Y, Gonick HC, Vaziri ND. Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am J Hypertens. 2000;13:552–5.

    CAS  PubMed  Google Scholar 

  107. Ding Y, Gonick HC, Vaziri ND, Liang K, Wei L. Lead-induced hypertension. III. Increased hydroxyl radical production. Am J Hypertens. 2001;14:169–73.

    CAS  PubMed  Google Scholar 

  108. Vaziri ND, Ding Y. Effect of lead on nitric oxide synthase expression in coronary endothelial cells: role of superoxide. Hypertension. 2001;37:223–6.

    CAS  PubMed  Google Scholar 

  109. Vaziri ND, Liang K, Ding Y. Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int. 1999;56:1492–8.

    CAS  PubMed  Google Scholar 

  110. Zhou XJ, Vaziri ND, Wang XQ, Silva FG, Laszik Z. Nitric oxide synthase expression in hypertension induced by inhibition of glutathione synthase. J Pharmacol Exp Ther. 2002;300:762–7.

    CAS  PubMed  Google Scholar 

  111. Welch WJ, Solis G, Chabrashvili T, Aslam S, Chen Y, Wilcox CS. The role of superoxide dismutase on blood pressure regulation during prolonged low dose angiotensin II infusion. Hypertension 2006;48:934–41.

    Google Scholar 

  112. Chu Y, Iida S, Lund DD, Weiss RM, DiBona GF, Watanabe Y, Faraci FM, Heistad DD. Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain. Circ Res. 2003;92:461–8.

    CAS  PubMed  Google Scholar 

  113. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross JJ, Honjo T, Chien KR. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415:171–5.

    CAS  PubMed  Google Scholar 

  114. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415:168–71.

    PubMed  Google Scholar 

  115. Lenda DM, Sauls BA, Boegehold MA. Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol. 2000;279:H7–14.

    CAS  Google Scholar 

  116. Liu Y, Rusch NJ, Lombard JH. Loss of endothelium and receptor-mediated dilation in pial arterioles of rats fed a short-term high salt diet. Hypertension. 1999;33:686–8.

    CAS  PubMed  Google Scholar 

  117. Gu J-W, Bailey A, Shparago M. Long-term high salt diet causes hypertension and alters renal pro-inflammatory gene expression profiles in Sprague–Dawley rats. FASEB J. 2005;19:A1587.

    Google Scholar 

  118. Vaziri ND, Rodríguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2(10):582–93.

    CAS  PubMed  Google Scholar 

  119. Nathanson S, Moreau E, Merlet-Benichou C, Gilbert T. In utero and in vitro exposure to beta-lactams impair kidney development in the rat. J Am Soc Nephrol. 2000;11(5):874–84.

    CAS  PubMed  Google Scholar 

  120. Gilbert T, Gaonach S, Moreau E, Merlet-Benichou C. Defect of nephrogenesis induced by gentamicin in rat metanephric organ culture. Lab Invest. 1994;70(5):656–66.

    CAS  PubMed  Google Scholar 

  121. Smaoui H, Mallie JP, Cheignon M, Borot C, Schaeverbeke J. Glomerular alterations in rat neonates after transplacental exposure to gentamicin. Nephron. 1991;59(4):626–31.

    CAS  PubMed  Google Scholar 

  122. Smaoui H, Mallie JP, Schaeverbeke M, Robert A, Schaeverbeke J. Gentamicin administered during gestation alters glomerular basement membrane development. Antimicrob Agents Chemother. 1993;37(7):1510–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Smaoui H, Schaeverbeke M, Mallié JP, Schaeverbeke J. Transplacental effects of gentamicin on endocytosis in rat renal proximal tubule cells. Pediatr Nephrol. 1994;8(4):447–50.

    CAS  PubMed  Google Scholar 

  124. Antonucci R, Pilloni MD, Fanos V. Antenatal non-steroidal anti-inflammatory drugs and the neonatal kidney. In: Fanos V, Chevalier RL, Faa G, Castaldi L, editors. Developmental nephrology: from embryology to metabolomics. Quartu S. Elena (Cagliari): Hygeia Press; 2011. p. 115–29.

    Google Scholar 

  125. Hasan J, Beharry KD, Gharraee Z, Stavitsky Y, Abad-Santos P, Abad-Santos M, Aranda JV, Modanlou HD. Early postnatal ibuprofen and indomethacin effects in suckling and weanling rat kidneys. Prostaglandins Other Lipid Mediat. 2008;85(3–4):81–8.

    CAS  PubMed  Google Scholar 

  126. Kent AL, Maxwell LE, Koina ME, Falk MC, Willenborg D, Dahlstrom JE. Renal glomeruli and tubular injury following indomethacin, ibuprofen, and gentamicin exposure in a neonatal rat model. Pediatr Res. 2007;62(3):307–12.

    CAS  PubMed  Google Scholar 

  127. Olsson K, Fyhrquist F, Benlamlih S, Dahlborn K. Effects of captopril on arterial blood pressure, plasma renin activity and vasopressin concentration in sodium-repleted and sodium-deficient goats: a serial study during pregnancy, lactation and anestrus. Acta Physiol Scand. 1984;121:73–80.

    CAS  PubMed  Google Scholar 

  128. Ceravolo GS, Franco MC, Carneiro-Ramos MS, Barreto-Chaves ML, Tostes RC, Nigro D, Fortes ZB, Carvalho MH. Enalapril and losartan restored blood pressure and vascular reactivity in intrauterine undernourished rats. Life Sci. 2007;80(8):782–7.

    CAS  PubMed  Google Scholar 

  129. Sahajpal V, Ashton N. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond). 2003;104(6):607–14.

    CAS  Google Scholar 

  130. Chung KH, Chevalier RL. Arrested development of the neonatal kidney following chronic ureteral obstruction. J Urol. 1996;155:1139–44.

    CAS  PubMed  Google Scholar 

  131. Medjebeur AA, Bussieres L, Gasser B, et al. Experimental bilateral urinary obstruction in fetal sheep: transforming growth factorbeta1 expression. Am J Physiol Renal Physiol. 1997;273:F372–9.

    CAS  Google Scholar 

  132. Steinhardt GF, Salinas-Madrigal L, Demello D, et al. Experimental ureteral obstruction in the fetal opossum: histologic assessment. J Urol. 1994;152:2133–8.

    CAS  PubMed  Google Scholar 

  133. Eskild-Jensen A, Frokiaer J, Djurhuus JC, et al. Reduced number of glomeruli in kidneys with neonatally induced partial ureteropelvic obstruction in pigs. J Urol. 2002;167:1435–9.

    PubMed  Google Scholar 

  134. Mcvary KT, Maizels M. Urinary obstruction reduces glomerulogenesis in the developing kidney: a model in the rabbit. J Urol. 1989;142:646–51.

    CAS  PubMed  Google Scholar 

  135. Chevalier RL, Kim A, Thornhill BA, Wolstenholme JT. Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int. 1999;55:793–807.

    CAS  PubMed  Google Scholar 

  136. Chevalier RL, Thornhill BA, Chang AY. Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int. 2000;58:1987–95.

    CAS  PubMed  Google Scholar 

  137. Chevalier RL, Thornhill BA, Wolstenholme JT, Kim A. Unilateral ureteral obstruction in early development alters renal growth: dependence on the duration of obstruction. J Urol. 1999;161:309–13.

    CAS  PubMed  Google Scholar 

  138. Thornhill BA, Burt LE, Chen C, Forbes MS, Chevalier RL. Variable chronic partial ureteral obstruction in the neonatal rat: a new model of ureteropelvic junction obstruction. Kidney Int. 2005;67(1):42–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Fanos M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chalkias, A., Syggelou, A., Fanos, V., Xanthos, T., Iacovidou, N. (2014). Lessons on Kidney Development from Experimental Studies. In: Faa, G., Fanos, V. (eds) Kidney Development in Renal Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0947-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0947-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0946-9

  • Online ISBN: 978-1-4939-0947-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics