Skip to main content

The Human Kidney at Birth: Structure and Function in Transition

  • Chapter
  • First Online:
Kidney Development in Renal Pathology

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

In the normal transition of the term infant from fetal to extrauterine life, nephrogenesis is complete and the number of functioning nephrons is not reduced. However, the range of nephron number in the human population varies by over tenfold, a function of normal inter-individual variation. Nephrogenesis may be impaired by fetal stress (malnutrition, ischemia, hypoxia, toxins, infection), maldevelopment, or preterm birth. Compensatory growth of remaining nephrons is maladaptive, leading to decreasing nephron function in adulthood. Serum creatinine concentration is a poor predictor of renal development or injury, and more accurate biomarkers are desperately needed. Contrast-enhanced magnetic resonance imaging is currently being developed to permit the identification of glomeruli in vivo, permitting serial measurement of glomerular number and size. Improved management of renal disease will depend on elucidation of factors mediating or modulating nephrogenesis and nephron loss, and on better tracking of individual nephrons throughout life.

Structure does not determine Function or vice versa, but both are simply different ways of regarding and describing the same thing.

—Jean R. Oliver, Nephrons and Kidneys 1968

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Bagby SP. Developmental antecedents of cardiovascular disease: a historical perspective. [Review] [67 refs]. J Am Soc Nephrol. 2005;16:2537–44.

    Article  PubMed  Google Scholar 

  2. Oliver J. Nephrons and kidneys: a quantitative study of developmental and evolutionary mammalian renal architectonics. New York: Hoeber Medical Division, Harper and Row; 1968.

    Google Scholar 

  3. Sperber I. Studies on the mammalian kidney. Uppsala: Almquist & Wiksells; 1944.

    Google Scholar 

  4. Matsell DG, Tarantal AF. Experimental models of fetal obstructive nephropathy. Pediatr Nephrol. 2002;17:470–6.

    Article  PubMed  Google Scholar 

  5. Glazebrook KN, McGrath FP, Steele BT. Prenatal compensatory renal growth: documentation with US. Radiology. 1993;189:733–5.

    Article  CAS  PubMed  Google Scholar 

  6. Mandell J, Peters CA, Estroff JA, Allred EN, Benacerraf BR. Human fetal compensatory renal growth. J Urol. 1993;150:790–2.

    CAS  PubMed  Google Scholar 

  7. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994;23:171–5.

    Article  CAS  PubMed  Google Scholar 

  8. Gandhi M, Olson JL, Meyer TW. Contribution of tubular injury to loss of remnant kidney function. Kidney Int. 1998;54:1157–65.

    Article  CAS  PubMed  Google Scholar 

  9. Moore RA. The total number of glomeruli in the normal human kidney. Anat Rec. 1930;48:153–68.

    Article  Google Scholar 

  10. Bendtsen TF, Nyengaard JR. Unbiased estimation of particle number using sections—a historical perspective with special reference to the stereology of glomeruli. J Microsc. 1988;153:93.

    Article  Google Scholar 

  11. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, Van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest. 1991;64:777–84.

    CAS  PubMed  Google Scholar 

  12. Vimtrup BJ. On the number, shape, structure, and surface area of the glomeruli in the kidneys of man and animals. Am J Anat. 1928;41:123–51.

    Article  Google Scholar 

  13. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol. 2011;26:1529–33.

    Article  PubMed  Google Scholar 

  14. Darwin C. The annotated origin: a facsimile of the first edition of on the origin of species. Cambridge: Belknap Press of Harvard University Press; 2009.

    Google Scholar 

  15. Williams RJ. Biochemical individuality: the basis for the genetotrophic concept. New York: Wiley; 1956.

    Google Scholar 

  16. Anson BJ. An atlas of human anatomy. Philadelphia: Saunders; 1963.

    Google Scholar 

  17. Woolf AS, Pitera JE. Embryology. In: Avner ED, Harmon WE, Niaudet P, et al., editors. Pediatric nephrology. Berlin: Springer; 2009. p. 3–30.

    Chapter  Google Scholar 

  18. Potter EL, Thierstein ST. Glomerular development in the kidney as an index of fetal maturity. J Pediatr. 1943;22:695–706.

    Article  Google Scholar 

  19. MacDonald MS, Emery JL. The late intrauterine and postnatal development of human renal glomeruli. J Anat. 1959;93:331–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Vernier RL, Birch-Andersen A. Studies of the human fetal kidney. J Pediatr. 1962;60:754–68.

    Article  CAS  PubMed  Google Scholar 

  21. Ferraz MLF, dos Santos AM, Cavellani CL, Rossi RC, Correa RRM, dos Reis MA, Teixeira VPA, Castro ECC. Histochemical and immunohistochemical study of the glomerular develop0ment in human fetuses. Pediatr Nephrol. 2008;23:257–62.

    Article  Google Scholar 

  22. Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. Arch Pathol. 1963;76:47–78.

    Google Scholar 

  23. Hughson MD, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63:2113–22.

    Article  PubMed  Google Scholar 

  24. Fetterman GH, Shuplock NA, Philipp FJ, Gregg HS. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood. Studies by microdissection. Pediatrics. 1965;35:601–19.

    CAS  PubMed  Google Scholar 

  25. Calcagno PL, Rubin MI. Renal extraction of para-aminohippurate in infants and children. J Clin Invest. 1963;42:1632–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, Marinelli V, Puddu M, Zaffanello M, Monga G, Fanos V. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med. 2010;23(S3):129–33.

    Article  PubMed  Google Scholar 

  27. Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell. 2008;15:781–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tsigeiny IF, Kouznetsova VL, Sweeney DE, Wu W, Bush KT, Nigam SK. Analysis of metagene portraits reveals distinct transitions during kidney organogenesis. Sci Signal. 2008;1:1–9.

    Google Scholar 

  29. Otis EM, Brent R. Equivalent ages in mouse and human embryos. Anat Rec. 2013;120:33–63.

    Article  Google Scholar 

  30. Hartman HA, Lai HL, Patterson P. Cessation of renal morphogenesis in mice. Dev Biol. 2007;310:379–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rumballe BA, Georgas KM, Combes AN, Adler LJ, Gilbert T, Little MH. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol. 2011;360:110–22.

    CAS  PubMed  Google Scholar 

  32. Hinchliffe SA, Lynch MRJ, Sargent PH, Howard CV, Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol. 1992;99:296–301.

    Article  CAS  PubMed  Google Scholar 

  33. Mesrobian HO, Laud PW, Todd E, Gregg DC. The normal kidney growth rate during year 1 of life is variable and age dependent. J Urol. 1998;160:989–93.

    Article  CAS  PubMed  Google Scholar 

  34. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NHG. Human renal functional maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.

    Article  PubMed  Google Scholar 

  35. Arant Jr BS. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92:705–12.

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7:17–25.

    Article  PubMed  Google Scholar 

  37. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RSC, Hoy WE, Bertram JF, Black MJ. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22:1365–74.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gubhaju L, Sutherland MR, Yoder BA, Zulli A, Bertram JF, Black MJ. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol. 2009;297:F1668–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131:1168–79.

    Article  PubMed  Google Scholar 

  40. Leung KCW, Tonelli M, James MT. Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol. 2013;9:77–85.

    Article  CAS  PubMed  Google Scholar 

  41. Eugene M, Muller F, Dommergues M, Le Moyec L, Dumez Y. Evaluation of postnatal renal function in fetuses with bilateral obstructive uropathies by proton nuclear magnetic resonance spectroscopy. Am J Obstet Gynecol. 1994;170:595–602.

    Article  CAS  PubMed  Google Scholar 

  42. Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72:1095–102.

    Article  CAS  PubMed  Google Scholar 

  43. Trnka P, Hiatt MJ, Tarantal AF, Matsell DG. Congenital urinary tract obstruction: defining markers of developmental kidney injury. Pediatr Res. 2012;72:446–54.

    Article  PubMed  Google Scholar 

  44. Charlton JR, Norwood VF, Kiley SC, Gurka MJ, Chevalier RL. Evolution of the urinary proteome during human renal development and maturation: variations with gestational and postnatal age. Pediatr Res. 2012;72:179–85.

    Article  CAS  PubMed  Google Scholar 

  45. Imasawa T, Nakazato T, Ikehira H, Fujikawa H, Nakajima R, Ito T, et al. Predicting the outcome of chronic kidney disease by the estimated nephron number: the rationale and design of PRONEP, a prospective, multicenter, observational cohort study. BMC Nephrol. 2012;13:11.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Beeman SC, Georges JF, Bennett KM. Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magn Reson Med. 2013;69:853–61.

    Article  CAS  PubMed  Google Scholar 

  47. Beeman SC, Zhang M, Gubhaju L, Wu T, Bertram JF, Frakes DH, Cherry BR, Bennett KM. Measuring glomerular number and size in perfused kidneys using MRI. Am J Physiol Renal Physiol. 2011;300:F1454–7.

    CAS  PubMed  Google Scholar 

  48. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232:194–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Chevalier M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chevalier, R.L., Charlton, J.R. (2014). The Human Kidney at Birth: Structure and Function in Transition. In: Faa, G., Fanos, V. (eds) Kidney Development in Renal Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0947-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0947-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0946-9

  • Online ISBN: 978-1-4939-0947-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics