Skip to main content

Molecular Regulation of Kidney Development

  • Chapter
  • First Online:
Kidney Development in Renal Pathology

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Here the main molecular mechanisms involved in kidney development in different animal species will be described. The majority of molecular data regarding nephrogenesis will be relative to the developing mouse kidney, which is currently the best-characterized model of renal organogenesis at a transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiagarajan RD, Cloonan N, Gardiner BB, Mercer TR, Kolle G, Nourbakhsh E, et al. Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling. BMC Genomics. 2011;12:441.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006;133:2995–3004.

    Article  CAS  PubMed  Google Scholar 

  3. Lin FJ, Qin J, Tang K, Tsai SY, Tsai MJ. Coup d’Etat: an orphan takes control. Endocr Rev. 2011;32:404–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yu CT, Tang K, Suh JM, Jiang R, Tsai SY, Tsai MJ. COUP-TFII is essential for metanephric mesenchyme formation and kidney precursor cell survival. Development. 2012;139:2330–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sajithlal G, Zou D, Silvius D, Xu PX. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol. 2005;284:323–36.

    Article  CAS  PubMed  Google Scholar 

  6. Grote D, Souabni A, Busslinger M, Bouchard M. Pax2/8 regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development. 2006;133:53–61.

    Article  CAS  PubMed  Google Scholar 

  7. Ostrom L, Tang MJ, Gruss P, Dressler GR. Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Dev Biol. 2000; 219:250–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dressler GR, Woolf AS. Pax2 in development and renal disease. Int J Dev Biol. 1999;43:463–8.

    CAS  PubMed  Google Scholar 

  9. Eccles MR, He S, Legge M, Kumar R, Fox J, Zhou C, et al. Pax genes in development and disease: the role of Pax2 in urogenital tract development. Int J Dev Biol. 2002;46:535–44.

    CAS  PubMed  Google Scholar 

  10. Dziarmaga A, Clark P, Stayner C, Julien JP, Torban E, Goodyer P, Eccles M. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal mice mimics the renal-coloboma syndrome. J Am Soc Nephrol. 2003;14:2767–74.

    Article  CAS  PubMed  Google Scholar 

  11. Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS. A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One. 2012;7(9):e44869.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, et al. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev. 2005;122:765–80.

    Article  CAS  PubMed  Google Scholar 

  13. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130: 3175–85.

    Article  CAS  PubMed  Google Scholar 

  14. Michos O, Cebrian C, Hyink D, Grieshamer U, Williams L, D’Agati V, et al. Kidney development in the absence of Gdnf and SpryI requires Fgf10. PLoS Genet. 2010;6:e1000809.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Constantini F. Renal branching morphogenesis: concepts, questions and recent advances. Differentiation. 2006;74:402–21.

    Article  Google Scholar 

  16. Nishinakamura R, Uchiyama Y, Sakaguchi M, Fujimura S. Nephron progenitors in the metanephric mesenchyme. Pediatr Nephrol. 2011;26:1463–7.

    Article  PubMed  Google Scholar 

  17. Plisov S, Tsang M, Shi G, Boyle S, Yoshino K, Dunwoodie SL, et al. Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning. J Am Soc Nephrol. 2005;16:1632–44.

    Article  CAS  PubMed  Google Scholar 

  18. Pugh JL, Sweeney Jr WE, Avner ED. Tyrosine kinase activity of the EGF receptor in murine metanephric organ culture. Kidney Int. 1995;47:774–81.

    Article  CAS  PubMed  Google Scholar 

  19. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development. 2011;138: 5099–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sims-Lucas S, Di Giovanni V, Schaefer C, Cusack B, Eswarakumar VP, Bates CM. Ureteric morphogenesis requires Fgfr1 and Fgfr2/Frs2α signaling in the metanephric mesenchyme. J Am Soc Nephrol. 2012;23: 607–17.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays. 2006;28:117–27.

    Article  CAS  PubMed  Google Scholar 

  22. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, et al. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol. 2011;227:1257–68.

    Article  Google Scholar 

  23. Jain S. The many faces of RET dysfunction in kidney. Organogenesis. 2009;5:177–90.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell. 2009;17:199–209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Moritz KM, Wintour EM, Black MJ, Bertram JF, Caruana G. Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol. 2008;196:1–78.

    CAS  PubMed  Google Scholar 

  26. Costantini F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6:252–62.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development. 2010;137:1975–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233–41.

    Article  CAS  PubMed  Google Scholar 

  29. Gonçalves A, Zeller R. Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PLoS One. 2011;6: e19370.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Oxburgh L, Brown AC, Fetting J, Hill B. BMP signaling in the nephron progenitor niche. Pediatr Nephrol. 2011;26:1491–7.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Larman BW, Karolak MJ, Lindner V, Oxburgh L. Distinct bone morphogenetic proteins activate indistinguishable transcriptional responses in nephron epithelia including Notch target genes. Cell Signal. 2012;24:257–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Michos O, Gonçalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development. 2007;134:2397–405.

    Article  CAS  PubMed  Google Scholar 

  33. Nie X, Xu J, El-Hashash A, Xu PX. Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol. 2011;352:141–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nie X, Sun J, Gordon RE, Cai CL, Xu PX. SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development. 2010;137: 755–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nishinakamura R, Takasato M. Essential roles of Sall1 in kidney development. Kidney Int. 2005;68:1948–50.

    Article  CAS  PubMed  Google Scholar 

  36. Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29: 321–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S, Kobayashi C, et al. Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci U S A. 2010;107: 9240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pitera JE, Scambler PJ, Woolf AS. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum Mol Genet. 2008;17:3953–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pitera JE, Woolf AS, Basson MA, Scambler PJ. Sprouty1 haploinsufficiency prevents renal agenesis in a model of Fraser syndrome. J Am Soc Nephrol. 2012;23:1790–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hilliard S, Aboudehen K, Yao X, El-Dahr SS. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Dev Biol. 2011; 353:354–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol. 2010; 298:F807–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Song R, Spera M, Garrett C, Yosypiv IV. Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis. Mech Dev. 2010;127:21–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Fesenko I, Franklin D, Garnett P, Bass P, Campbell S, Hardyman M, et al. Stem cell marker TRA-1-60 is expressed in foetal and adult kidney and upregulated in tubulo-interstitial disease. Histochem Cell Biol. 2010;134:355–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Powers CJ, McLeskey SW, Wellestein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7:165–97.

    Article  CAS  PubMed  Google Scholar 

  45. Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Am J Physiol Renal Physiol. 2011;301:F245–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.

    Article  CAS  PubMed  Google Scholar 

  47. Tufro A, Teichman J, Woda C, Villegas G. Semaphorin 3a inhibits ureteric bud branching morphogenesis. Mech Dev. 2008;125:558–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Reidy K, Tufro A. Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte–endothelial crosstalk. Pediatr Nephrol. 2011;26:1407–12.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Maeshima A, Vaughn DA, Choi Y, Nigam SK. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev Biol. 2006;295:473–85.

    Article  CAS  PubMed  Google Scholar 

  50. Abdel-Hakeem AK, Henry TQ, Magee TR, Desai M, Ross MG, Mansano RZ, et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression. Am J Obstet Gynecol. 2008;252:e1–7.

    Google Scholar 

  51. Zhang SL, Chen YW, Tran S, Chenier I, Hébert MJ, Ingelfinger JR. Reactive oxygen species in the presence of high glucose alter ureteric bud morphogenesis. J Am Soc Nephrol. 2007;18:2105–15.

    Article  CAS  PubMed  Google Scholar 

  52. Fanni D, Gerosa C, Nemolato S, Mocci C, Pichiri G, Coni P, et al. “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true? J Matern Fetal Neonatal Med. 2012;25 Suppl 3:41–8.

    Article  PubMed  Google Scholar 

  53. Mugford JW, Sipilä P, Kobayashi A, Behringer RR, McMahon AP. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol. 2008;319: 396–405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mugford JW, Jing Y, Kobayashi A, McMahon AP. High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol. 2009;333:312–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Batchelder CA, Chang C, Lee I, Matsell DG, Yoder MC, Tarantal AF. Renal ontogeny in the Rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors. Differentiation. 2009;78:45–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hendry C, Rumballe B, Moritz K, Little MH. Defining and redefining the nephron progenitor population. Pediatr Nephrol. 2011;26:1395–406.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kiefer SM, Robbins L, Rauchman M. Conditional expression of Wnt9b in Six2-positive cells disrupts stomach and kidney function. PLoS One. 2012;7:e43098. doi:10.1371/journal.pone.0043098. Epub 2012 Aug 17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Fogelgren B, Yang S, Sharp IC, Huckstep OJ, Ma W, Somponpun SJ, et al. Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure, and hypertension in Br/+ adult mice. Am J Physiol Renal Physiol. 2009;296:1166–78.

    Google Scholar 

  60. Denner DR, Rauchman M. Mi-2/NuRD is required in renal progenitor cells during embryonic kidney development. Dev Biol. 2013;375:105–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell. 2008;15:781–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Schmidt-Ott KM, Barash J. WNT/β-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int. 2008;74:1004–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via cap mesenchyme-derived connecting segment. Dev Biol. 2009;332:273–86.

    Article  CAS  PubMed  Google Scholar 

  64. Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, Rosenblum ND. β-catenin causes renal dysplasia via upregulation of Tgfβ2 and Dkk1. J Am Soc Nephrol. 2011;22:718–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development. 2005;132:2809–23.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134:801–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Surendran K, Boyle S, Barak H, Kim M, Stromberski C, McCright B, Kopan R. The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing mint dosage. Dev Biol. 2010;337:386–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Cheng H-T, Miner JH, Lin MH, Tansey MG, Roth K, Kopan R. γ-Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development. 2003;130:5031–42.

    Article  CAS  PubMed  Google Scholar 

  69. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2:284–91.

    Article  CAS  PubMed  Google Scholar 

  70. Zeisberg M, Neilson EG. Biomarkers of epithelial–mesenchymal transition. J Clin Invest. 2009;119: 1429–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transition in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  72. Zeisberg M. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol. 2010;21:1247–53.

    Article  PubMed  Google Scholar 

  73. Duffield JS. Epithelial to mesenchymal transition in solid organ injury: fact or artifact. Gastroenterology. 2010;139:1081–3.

    Article  PubMed  Google Scholar 

  74. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176:85–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Madhusudhan T, Wang H, Straub BK, Gröne E, Zhou Q, Shahzad K, et al. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood. 2012;119:874–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Welsh GI, Saleem MA. Nephrin-signature molecule of the glomerular podocyte? J Pathol. 2010;220:328–37.

    CAS  PubMed  Google Scholar 

  77. Eremina V, Baelde HJ, Quaggin SE. Role of VEGF-a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron. 2007;106:32–7.

    Google Scholar 

  78. Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS. Defining the molecular character of the developing and adult kidney podocyte. PLoS One. 2011;6:e24640. doi:10.1371/journal.pone.0024640. Epub 2011 Sep 8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Mugford JW, Sipila P, McMahon JA, McMahon AP, et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324:88–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Guillame R, Bressan M, Herzlinger D. Paraxial mesoderm contributes stromal cells to the developing kidney. Dev Biol. 2009;329:169–75.

    Article  Google Scholar 

  81. Wellik D. HOX genes are required for the differentiation and integration of kidney cortical stromal cells. In: 11th international workshop on developmental nephrology proceedings, New York, Abstract O-14, 2010.

    Google Scholar 

  82. Loughna S, Yuan HT, Woolf AS. Effects of oxygen on vascular patterning in Tie1/LacZ metanephric kidneys in vitro. Biochem Biophys Res Commun. 1998;247: 361–6.

    Article  CAS  PubMed  Google Scholar 

  83. Hao S, Shen H, Hou Y, Mars WM, Liu Y. tPA is a potent mitogen for renal interstitial fibroblasts. Am J Pathol. 2010;177:1164–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Airik R, Bussen M, Singh MK, Petry M, Kispert A. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116:663–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Lye CM, Fasano L, Woolf AS. Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol. 2010;21:24–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Nemolato M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gerosa, C., Fanni, D., Nemolato, S., Faa, G. (2014). Molecular Regulation of Kidney Development. In: Faa, G., Fanos, V. (eds) Kidney Development in Renal Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0947-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0947-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0946-9

  • Online ISBN: 978-1-4939-0947-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics