Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 71))

Abstract

We consider generalizations of Schützenberger’s promotion operator on the set \(\mathcal{L}\) of linear extensions of a finite poset. This gives rise to a strongly connected graph on \(\mathcal{L}\). In earlier work (Ayyer et al., J. Algebraic Combinatorics 39(4), 853–881 (2014)), we studied promotion-based Markov chains on these linear extensions which generalizes results on the Tsetlin library. We used the theory of \(\mathcal{R}\)-trivial monoids in an essential way to obtain explicitly the eigenvalues of the transition matrix in general when the poset is a rooted forest. We first survey these results and then present explicit bounds on the mixing time and conjecture eigenvalue formulas for more general posets. We also present a generalization of promotion to arbitrary subsets of the symmetric group.

Dedicated to Mohan Putcha and Lex Renner on the occasion of their 60th birthdays

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athanasiadis, C.A., Diaconis, P.: Functions of random walks on hyperplane arrangements. Adv. Appl. Math. 45(3), 410–437 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ayyer, A., Klee, S., Schilling, A.: Combinatorial Markov chains on linear extensions. J. Algebra. Combin. 39(4), 853–881 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ayyer, A., Schilling, A., Steinberg, B., Thiéry, N.M.: Directed nonabelian sandpile models on trees (preprint). arXiv.1305.1697

    Google Scholar 

  4. Bidigare, T.P.: Hyperplane arrangement face algebras and their associated Markov chains. Thesis (Ph.D.), University of Michigan. ProQuest LLC, Ann Arbor (1997)

    Google Scholar 

  5. Bidigare, P., Hanlon, P., Rockmore, D.: A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. 99(1), 135–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björner, A.: Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries. In: Building Bridges. Volume 19 of Bolyai Society Mathematical Studies, pp. 165–203. Springer, Berlin (2008)

    Google Scholar 

  7. Björner, A.: Note: random-to-front shuffles on trees. Electron. Commun. Probab. 14, 36–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brown, K.S.: Semigroups, rings, and Markov chains. J. Theor. Probab. 13(3), 871–938 (2000)

    Article  MATH  Google Scholar 

  9. Brown, K.S.: Semigroup and ring theoretical methods in probability. In: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Volume 40 of Fields Institute Communications, pp. 3–26. American Mathematical Society, Providence (2004)

    Google Scholar 

  10. Brown, K.S., Diaconis, P.: Random walks and hyperplane arrangements. Ann. Probab. 26(4), 1813–1854 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dies, J-É.: Chaînes de Markov sur les permutations. Volume 1010 of Lecture Notes in Mathematics. Springer, Berlin (1983)

    Google Scholar 

  12. Donnelly, P.: The heaps process, libraries, and size-biased permutations. J. Appl. Probab. 28(2), 321–335 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edelman, P., Hibi, T., Stanley, R.P.: A recurrence for linear extensions. Order 6(1), 15–18 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fill, J.A.: An exact formula for the move-to-front rule for self-organizing lists. J. Theor. Probab. 9(1), 113–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Green, J.A.: On the structure of semigroups. Ann. Math. (2), 54, 163–172 (1951)

    Google Scholar 

  16. Haiman, M.D.: Dual equivalence with applications, including a conjecture of Proctor. Discret. Math. 99(1–3), 79–113 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hendricks, W.J.: The stationary distribution of an interesting Markov chain. J. Appl. Probab. 9, 231–233 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hendricks, W.J.: An extension of a theorem concerning an interesting Markov chain. J. Appl. Probab. 10, 886–890 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6(2), 278–291 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Letac, G.: Chaînes de Markov sur les permutations. Volume 63 of Séminaire de Mathématiques Supérieures (Seminar on Higher Mathematics). Presses de l’Université de Montréal, Montreal (1978)

    Google Scholar 

  21. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009). With a chapter by Propp, J.G., Wilson, D.B.

    Google Scholar 

  22. Malvenuto, C., Reutenauer, C.: Evacuation of labelled graphs. Discret. Math. 132(1–3), 137–143 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Phatarfod, R.M.: On the matrix occurring in a linear search problem. J. Appl. Probab. 28(2), 336–346 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rhoades, B.: Cyclic sieving, promotion, and representation theory. J. Combin. Theory Ser. A 117(1), 38–76 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schützenberger, M.P.: Promotion des morphismes d’ensembles ordonnés. Discret. Math. 2, 73–94 (1972)

    Article  MATH  Google Scholar 

  26. Shimozono, M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebr. Combin. 15(2), 151–187 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). With a foreword by Rota, G.-C., Corrected reprint of the 1986 original

    Google Scholar 

  28. Stanley, R.P.: Promotion and evacuation. Electron. J. Combin. 16(2, Special volume in honor of Anders Bjorner), Research Paper 9, 24 (2009)

    Google Scholar 

  29. Stein, W.A., et al.: Sage Mathematics Software (Version 5.0). The Sage Development Team (2012). http://www.sagemath.org

  30. Steinberg, B.: Möbius functions and semigroup representation theory. J. Combin. Theory Ser. A 113(5), 866–881 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Steinberg, B.: Möbius functions and semigroup representation theory. II. Character formulas and multiplicities. Adv. Math. 217(4), 1521–1557 (2008)

    MATH  Google Scholar 

  32. The Sage-Combinat community: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2012). http://combinat.sagemath.org

  33. Tsetlin, M.L.: Finite automata and models of simple forms of behaviour. Russ. Math. Surv. 18(4), 1 (1963)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

A.A. would like to acknowledge support from MSRI, where part of this work was done. S.K. was supported by NSF VIGRE grant DMS–0636297. A.S. was supported by NSF grant DMS–1001256 and OCI–1147247.

We would like to thank the organizers Mahir Can, Zhenheng Li, Benjamin Steinberg, and Qiang Wang of the workshop on “Algebraic monoids, group embeddings and algebraic combinatorics” held July 3–6, 2012 at the Fields Institute at Toronto for giving us the opportunity to present this work. We would like to thank Nicolas M. Thiéry for discussions.

The Markov chains presented in this paper are implemented in a Maple package by the first author (AA) available from his home page and in Sage [29, 32] by the third author (AS). Many of the pictures presented here were created with Sage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ayyer, A., Klee, S., Schilling, A. (2014). Markov Chains for Promotion Operators. In: Can, M., Li, Z., Steinberg, B., Wang, Q. (eds) Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics. Fields Institute Communications, vol 71. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0938-4_13

Download citation

Publish with us

Policies and ethics